98%
921
2 minutes
20
Autism is traditionally diagnosed behaviorally but has a strong genetic basis. A genetics-first approach could transform understanding and treatment of autism. However, isolating the gene-brain-behavior relationship from confounding sources of variability is a challenge. We demonstrate a novel technique, 3D transport-based morphometry (TBM), to extract the structural brain changes linked to genetic copy number variation (CNV) at the 16p11.2 region. We identified two distinct endophenotypes. In data from the Simons Variation in Individuals Project, detection of these endophenotypes enabled 89 to 95% test accuracy in predicting 16p11.2 CNV from brain images alone. Then, TBM enabled direct visualization of the endophenotypes driving accurate prediction, revealing dose-dependent brain changes among deletion and duplication carriers. These endophenotypes are sensitive to articulation disorders and explain a portion of the intelligence quotient variability. Genetic stratification combined with TBM could reveal new brain endophenotypes in many neurodevelopmental disorders, accelerating precision medicine, and understanding of human neurodiversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168471 | PMC |
http://dx.doi.org/10.1126/sciadv.adl5307 | DOI Listing |
Elife
September 2025
Human Biology and Primate Evolution, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, Tennessee.
Importance: Survivors of critical illness often have ongoing issues that affect functioning, including driving ability.
Objective: To examine whether intensive care unit (ICU) delirium is independently associated with long-term changes in driving behaviors.
Design, Setting, And Participants: This multicenter, longitudinal cohort study included 151 survivors of critical illness residing within 200 miles of Nashville, Tennessee.
Cereb Cortex
August 2025
Department of Psychology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany.
The human auditory system must distinguish relevant sounds from noise. Severe hearing loss can be treated with cochlear implants (CIs), but how the brain adapts to electrical hearing remains unclear. This study examined adaptation to unilateral CI use in the first and seventh months after CI activation using speech comprehension measures and electroencephalography recordings, both during passive listening and an active spatial listening task.
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Brain ischemia is a major global cause of disability, frequently leading to psychoneurological issues. This study investigates the effects of 4-aminopyridine (4-AP) on anxiety, cognitive impairment, and potential underlying mechanisms in a mouse model of medial prefrontal cortex (mPFC) ischemia. Mice with mPFC ischemia were treated with normal saline (NS) or different doses of 4-AP (250, 500, and 1000 µg/kg) for 14 consecutive days.
View Article and Find Full Text PDFTransl Stroke Res
September 2025
Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
Recent studies have shown that the glymphatic system plays a crucial role in driving hyperacute edema after ischemic stroke. This has sparked interest in understanding how this system changes in later phases of ischemic stroke. In this study, we utilized cisternal contrast-enhanced magnetic resonance imaging (CE-MRI) and immunofluorescence staining to investigate glymphatic system alterations at subacute and chronic phases of ischemic stroke.
View Article and Find Full Text PDF