A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Counterion docking: a general approach to reducing energetic disorder in doped polymeric semiconductors. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molecular doping plays an important role in controlling the carrier concentration of organic semiconductors. However, the introduction of dopant counterions often results in increased energetic disorder and traps due to the molecular packing disruption and Coulomb potential wells. To date, no general strategy has been proposed to reduce the counterion-induced structural and energetic disorder. Here, we demonstrate the critical role of non-covalent interactions (NCIs) between counterions and polymers. Employing a computer-aided approach, we identified the optimal counterions and discovered that NCIs determine their docking positions, which significantly affect the counterion-induced energetic disorder. With the optimal counterions, we successfully reduced the energetic disorder to levels even lower than that of the undoped polymer. As a result, we achieved a high n-doped electrical conductivity of over 200 S cm and an eight-fold increase in the thermoelectric power factor. We found that the NCIs have substantial effects on doping efficiency, polymer backbone planarity, and Coulomb potential landscape. Our work not only provides a general strategy for identifying the most suitable counterions but also deepens our understanding of the counterion effects on doped polymeric semiconductors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166965PMC
http://dx.doi.org/10.1038/s41467-024-49208-xDOI Listing

Publication Analysis

Top Keywords

energetic disorder
20
doped polymeric
8
polymeric semiconductors
8
coulomb potential
8
general strategy
8
optimal counterions
8
energetic
5
disorder
5
counterions
5
counterion docking
4

Similar Publications