98%
921
2 minutes
20
Photomodulable fluorescent probes are drawing increasing attention due to their applications in advanced bioimaging. Whereas photoconvertible probes can be advantageously used in tracking, photoswitchable probes constitute key tools for single-molecule localization microscopy to perform super-resolution imaging. Herein, we shed light on a red and far-red BODIPY, namely, BDP-576 and BDP-650, which possess both properties of conversion and switching. Our study demonstrates that these pyrrolyl-BODIPYs convert into typical green- and red-emitting BODIPYs that are perfectly adapted to microscopy. We also showed that this pyrrolyl-BODIPYs undergo Directed Photooxidation Induced Conversion, a photoconversion mechanism that we recently introduced, where the pyrrole moiety plays a central role. These unique features were used to develop targeted photoconvertible probes toward different organelles or subcellular units (plasma membrane, mitochondria, nucleus, actin, Golgi apparatus, ) using chemical targeting moieties and a Halo tag. We notably showed that BDP-650 could be used to track intracellular vesicles over more than 20 min in two-color imagings with laser scanning confocal microscopy, demonstrating its robustness. The switching properties of these photoconverters were studied at the single-molecule level and were then successfully used in live single-molecule localization microscopy in epithelial cells and neurons. Both membrane- and mitochondria- targeted probes could be used to decipher membrane 3D architecture and mitochondrial dynamics at the nanoscale. This study builds a bridge between the photoconversion and photoswitching properties of probes undergoing directed photooxidation and shows the versatility and efficacy of this mechanism in advanced live imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c05231 | DOI Listing |
bioRxiv
March 2025
J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States.
This study combines live pancreas tissue slices with adenoviral transduction of the Calcium Modulated Photoactivatable Ratiometric Integrator 2 (CaMPARI2) biosensor for high-throughput analysis of islet calcium responses. Pancreas slices preserve islets within their native microenvironment, adding tissue context to the study of islet function and pathology. A key challenge of the pancreas slice model has been efficient transgene delivery while maintaining viability and function.
View Article and Find Full Text PDFMol Cancer
March 2025
Department of Otorhinolaryngology, LMU University Hospital, LMU Munich, Munich, Germany.
Background: Recurrent/metastatic head and neck squamous cell carcinoma (R/M-HNSCC) is a severe, frequently lethal condition. Oncogene addiction to epidermal growth factor receptor (EGFR) is a hallmark of HNSCC, but the clinical efficacy of EGFR-targeted therapies remains low. Understanding molecular networks governing EGFR-driven progression is paramount to the exploration of (co)-treatment targets and predictive markers.
View Article and Find Full Text PDFBMB Rep
May 2025
Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
Deubiquitinases (DUBs) are essential regulators of protein homeostasis that influence cellular signaling, protein stability, and degradation by removing ubiquitin chains from substrate proteins. Understanding DUB-substrate interactions is critical to elucidate their functional roles and therapeutic potential. This review highlights key methodologies to investigate DUB activity and substrate interactions, including biochemical assays, fluorescence-based approaches, and in vitro deubiquitination assays.
View Article and Find Full Text PDFCell Mol Immunol
April 2025
Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Brain injury is the leading cause of death and disability in survivors of cardiac arrest, where neuroinflammation triggered by infiltrating macrophages plays a pivotal role. Here, we seek to elucidate the origin of macrophages infiltrating the brain and their mechanism of action after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Wild-type or photoconvertible Cd68-Cre:R26-LSL-KikGR mice were subjected to 10-min CA/CPR, and the migration of gut-derived macrophages into brain was assessed.
View Article and Find Full Text PDFPhytomedicine
December 2024
Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Resea
Background: Hematoma clearance is crucial for treating intracerebral hemorrhage (ICH). Currently, there is a lack of pharmacological therapy aimed at promoting hematoma absorption. Meningeal lymphatic system, as a drain of brain, is a potential therapeutic approach in ICH.
View Article and Find Full Text PDF