98%
921
2 minutes
20
First, an organic semiconductor fluorescent molecule of 4',4″,4"'-(2,4,6-triphenyl-1,3,5-triazine)-4-(-diphenyl-(1,1'-biphenyl)-4-amine (TPTz) is successfully synthesized by the Suzuki-Miyaura coupling reaction of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine with 4-(diphenylamino)phenylboronic acid. TPTz offers as high as 85% fluorescence quantum yield and a strong solvent effect, with fluorescent colors across the visible spectrum in different solvents. Then, an organic-inorganic hybrid fluorescent porous polymer of PCS-TPTz with a surface area of 714 m g and pore volume of 0.660 cm g is prepared by the Friedel-Crafts reaction of TPTz and octavinylsilsesquioxane; PCS-TPTz showed a high fluorescence quantum yield of 17% with a large Stokes shift of up to 280 nm. The excellent fluorescence properties and insolubility of PCS-TPTz make it to act as a heterophase sensor for tetracycline hydrochloride (TH) with a of 2.39 × 10 M. In addition, PCS-TPTz exhibits an excellent photodegradation activity for antibiotic TH without the requirement for additional oxidants or pH adjustments. ESR spectra and free radical trapping experiment indicate that superoxide radical (•O) is the active radical for achieving the photodegradation. The simultaneous detection and degradation of TH are achieved by PCS-TPTz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c00800 | DOI Listing |
Int J Surg Pathol
September 2025
Department of Pathology, The Thirteenth People's Hospital of Chongqing, Chongqing, China.
Soft tissue sarcomas are a heterogeneous group of malignancies arising from mesenchymal cells. Recent advancements in genomic profiling have identified novel gene fusions in these tumors, offering new insights into their pathogenesis and potential therapeutic targets. Here, we describe a spindle cell sarcoma harboring a novel gene fusion.
View Article and Find Full Text PDFVirchows Arch
September 2025
Ningbo Clinical Pathology Diagnosis Center, #685 Huancheng North Road, Ningbo, Zhejiang, 315000, China.
The spindle cell variant of papillary thyroid carcinoma (PTC) is exceptionally rare and poses significant diagnostic challenges due to its morphological overlap with other spindle cell lesions of the thyroid. We report a novel case of spindle cell variant PTC in a 66-year-old woman presenting with a TI-RADS 4 thyroid nodule, initially classified as Bethesda III on fine-needle aspiration. Histopathological examination revealed a biphasic tumor composed predominantly of bland spindle cells arranged in solid sheets and fascicles, admixed with entrapped thyroid follicles.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
Local pH variations play a pivotal role in numerous critical biological processes. However, achieving the tunability and selectivity of pH detection remains a challenge. Here, we present a DNA-based strategy that enables programmable and selective pH responses, which is termed shadow-strand hybridization-actuated displacement engineering (SHADE).
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Life-like Materials and Systems, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
Transmembrane signaling is essential for cellular communication, yet reconstituting such mechanisms in synthetic systems remains challenging. Here, we report a simple and robust DNA-based mechanism for transmembrane signaling in synthetic cells using cholesterol-modified single-stranded DNA (Chol-ssDNA). We discovered that anchored Chol-ssDNA spontaneously flips across the membrane of giant unilamellar lipid vesicles (GUVs) in a nucleation-driven, defect-mediated process.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada.
Conjugated polymer nanoparticles (CPNs), especially poly(-phenylene ethynylene) nanoparticles (PPE-NPs), are promising candidates for bio-imaging due to their high photostability, adjustable optical characteristics, and biocompatibility. Despite their potential, the fluorescence mechanisms of these nanoparticles are not yet fully understood. In this work, we modeled a spherical PPE-NP in a water environment using 30 PPE dimer chains.
View Article and Find Full Text PDF