98%
921
2 minutes
20
Efficient coupling in broad wavelength range is desirable for wide-spectrum infrared light detection, yet this is a challenge for intersubband transition in semiconductor quantum wells (QWs). High-Q cavities mostly intensify the absorption at peak wavelengths but with shrinking bandwidth. Here, we propose a novel approach to expand the operating spectral range of the Quantum Well Infrared Photodetectors (QWIPs). By processing the QWs into asymmetric micro-pillar array structure, the device demonstrates a substantial enhancement in spectral response across the wavelength from 7.1 µm to 12.3 µm with guided mode resonance (GMR) effects. The blackbody responsivity is then increased by 3 times compared to that of the 45 polished edge-coupled counterpart. Meanwhile, the dark current density remains unchanged after the deep etching process, which will benefit the electrical performance of the detector with reduced volume duty ratio. In contrast to the symmetric micro-pillar array that contains simple resonance mode, the detectivity of QWIP in asymmetric pillar structure is found to be improved by 2-4 times within the range of 9.5 µm to 15 µm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.524841 | DOI Listing |
Top Magn Reson Imaging
October 2025
BIOSPACE LAB, Nesles-la-Vallée, France.
Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
Photoremovable protecting groups (PRPGs) enable precise spatiotemporal control over molecular release and functional activation. Recent advances have introduced wavelength-selective systems for sequential deprotection, broadening applications in drug delivery, material synthesis, and photopolymerization. In parallel, PRPGs play a crucial role in photobase generators (PBGs) and photoacid generators (PAGs), enabling oxygen-tolerant, spatially controlled polymerization and depolymerization through light-induced base and acid release.
View Article and Find Full Text PDFJ Neurosurg Anesthesiol
October 2025
Department of Anesthesia and Perioperative Medicine, Western University.
Introduction: Current commercial cerebral oximeters only monitor the frontal lobes, however, some cerebrovascular territories may experience ischemia while others remain well perfused. This pilot study used a novel, high-density, dual-wavelength, time-resolved functional cerebral oximeter (Kernel Flow) with 2000 channels to assess the regional differences of cerebral oxygenation (StO2) in response to hypotension across different vascular territories during shoulder surgery in the beach chair position.
Methods: Twenty-seven adult patients were monitored, recording blood pressure, heart rate, regional cerebral oxygen saturation, and other vital parameters.
J Chem Phys
September 2025
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
The mechanical properties of graphene are investigated using classical molecular dynamics simulations as a function of temperature T and external stress τ. The elastic response is characterized by calculating elastic constants via three complementary methods: (i) numerical derivatives of stress-strain curves, (ii) analysis of cell fluctuation correlations, and (iii) phonon dispersion analysis. Simulations were performed with two interatomic models: an empirical potential and a tight-binding electronic Hamiltonian.
View Article and Find Full Text PDFAdv Mater
September 2025
Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.
Recently, joint replacement surgery is facing significant challenges of patient dissatisfaction and the need for revision procedures. In-situ monitoring of stress stability at the site of artificial joint replacement during postoperative evaluation is important. Mechanoluminescence (ML), a novel "force to light" conversion technology, may be used to monitor such bio-stress within tissues.
View Article and Find Full Text PDF