Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The uniaxial compressive strength (UCS) and elasticity modulus (E) of intact rock are two fundamental requirements in engineering applications. These parameters can be measured either directly from the uniaxial compressive strength test or indirectly by using soft computing predictive models. In the present research, the UCS and E of intact carbonate rocks have been predicted by introducing two stacking ensemble learning models from non-destructive simple laboratory test results. For this purpose, dry unit weight, porosity, P-wave velocity, Brinell surface harnesses, UCS, and static E were measured for 70 carbonate rock samples. Then, two stacking ensemble learning models were developed for estimating the UCS and E of the rocks. The applied stacking ensemble learning method integrates the advantages of two base models in the first level, where base models are multi-layer perceptron (MLP) and random forest (RF) for predicting UCS, and support vector regressor (SVR) and extreme gradient boosting (XGBoost) for predicting E. Grid search integrating k-fold cross validation is applied to tune the parameters of both base models and meta-learner. The results demonstrate the generalization ability of the stacking ensemble method in the comparison of base models in the terms of common performance measures. The values of coefficient of determination (R2) obtained from the stacking ensemble are 0.909 and 0.831 for predicting UCS and E, respectively. Similarly, the stacking ensemble yielded Root Mean Squared Error (RMSE) values of 1.967 and 0.621 for the prediction of UCS and E, respectively. Accordingly, the proposed models have superiority in the comparison of SVR and MLP as single models and RF and XGBoost as two representative ensemble models. Furthermore, sensitivity analysis is carried out to investigate the impact of input parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164374PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302944PLOS

Publication Analysis

Top Keywords

stacking ensemble
28
base models
16
uniaxial compressive
12
compressive strength
12
ensemble learning
12
models
11
elasticity modulus
8
modulus intact
8
intact carbonate
8
carbonate rocks
8

Similar Publications

Understanding the structural and functional diversity of toxin proteins is critical for elucidating macromolecular behavior, mechanistic variability, and structure-driven bioactivity. Traditional approaches have primarily focused on binary toxicity prediction, offering limited resolution into distinct modes of action of toxins. Here, we present MultiTox, an ensemble stacking framework for the classification of toxin proteins based on their molecular mode of action: neurotoxins, cytotoxins, hemotoxins, and enterotoxins.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.

View Article and Find Full Text PDF

Multimodal Deep Learning for Generating Potential Anti-Dengue Peptides.

ACS Omega

September 2025

Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

Dengue virus remains a significant global health threat, imposing a substantial disease burden on nearly half of the world's population. The urgent need for effective antiviral therapeutics, including therapeutic peptides targeting the Dengue virus, is critical in the current healthcare landscape. However, the availability of anti-Dengue peptides (ADPs) data remains limited in existing data sets, posing a challenge for computational modeling and discovery.

View Article and Find Full Text PDF

We combined circular dichroism (CD) and viscosity measurements with molecular dynamics (MD) simulations and classification and regression approaches to machine learning to characterize solution structures of 22-mer, 25-mer, and 30-mer peptide- (-GlyArg6) conjugated phosphorodiamidate morpholino oligonucleotides (PPMOs). PPMO molecules form non-canonical folded structures with 1.4- to 1.

View Article and Find Full Text PDF

Noninvasive multiclass milk contaminants detection using hyperspectral imaging and hybrid ensemble learning.

J Dairy Sci

September 2025

Advance Image Processing Research Laboratory (AIPRL), Institute of Computer and Software Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan.

Food contamination remains a serious global concern due to its health risks, with milk being one of the most commonly adulterated foods in developing countries such as Pakistan, India, and Bangladesh. Accurate detection of milk contamination is essential for ensuring consumer safety and maintaining food industry standards. This study explores both invasive and noninvasive approaches for contamination analysis.

View Article and Find Full Text PDF