98%
921
2 minutes
20
Background: Sepsis is a life-threatening condition but predicting its development and progression remains a challenge.
Objective: This study aimed to assess the impact of infection site on sepsis development among emergency department (ED) patients.
Methods: Data were collected from a single-center ED between January 2016 and December 2019. Patient encounters with documented infections, as defined by the Systematized Nomenclature of Medicine-Clinical Terms for upper respiratory tract (URI), lower respiratory tract (LRI), urinary tract (UTI), or skin or soft-tissue infections were included. Primary outcome was the development of sepsis or septic shock, as defined by Sepsis-1/2 criteria. Secondary outcomes included hospital disposition and length of stay, blood and urine culture positivity, antibiotic administration, vasopressor use, in-hospital mortality, and 30-day mortality. Analysis of variance and various different logistic regression approaches were used for analysis with URI used as the reference variable.
Results: LRI was most associated with sepsis (relative risk ratio [RRR] 5.63; 95% CI 5.07-6.24) and septic shock (RRR 21.2; 95% CI 17.99-24.98) development, as well as hospital admission rates (odds ratio [OR] 8.23; 95% CI 7.41-9.14), intensive care unit admission (OR 4.27; 95% CI 3.84-4.74), in-hospital mortality (OR 6.93; 95% CI 5.60-8.57), and 30-day mortality (OR 7.34; 95% CI 5.86-9.19). UTIs were also associated with sepsis and septic shock development, but to a lesser degree than LRI.
Conclusions: Primary infection sites including LRI and UTI were significantly associated with sepsis development, hospitalization, length of stay, and mortality among patients presenting with infections in the ED.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jemermed.2024.01.016 | DOI Listing |
JB JS Open Access
September 2025
Department of Orthopaedic Surgery, Mass General Brigham, Harvard Medical School, Boston, Massachusetts.
Background: It is unclear whether the current North Atlantic Treaty Organization (NATO) trauma system will be effective in the setting of Large-Scale Combat Operations (LSCO). We sought to model the efficacy of the NATO trauma system in the setting of LSCO. We also intended to model novel scenarios that could better adapt the current system to LSCO.
View Article and Find Full Text PDFFront Pediatr
August 2025
Department of Neonatal Research, Inova Health Services, Falls Church, VA, United States.
Introduction: Neonatal sepsis is a dysregulated immune response to bloodstream infection causing serious disease and death. Our review seeks to integrate the knowledge gained from studies of multiple molecular methods- such as genomics, metabolomics, transcriptomics, and the gut microbiome- in the setting of neonatal sepsis that may improve the diagnosis, classification, and treatment of the disease. Sepsis claims over 200,000 lives annually worldwide and remains a top 10 cause of infant mortality in the US.
View Article and Find Full Text PDFCureus
August 2025
Department of Paediatrics, All India Institute of Medical Sciences, Raebareli, Raebareli, IND.
Introduction: Early recognition of pediatric sepsis is crucial for timely intervention, prevention of mortality, and improving long-term outcomes in children. However, the lack of advanced diagnostics in resource-limited settings poses a significant challenge to early diagnosis and intervention. Complete blood count (CBC) parameters are routinely performed, cost-effective, and readily available, yet their diagnostic utility in pediatric sepsis remains underutilized.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2025
Department of Emergency, The First People's Hospital of Guiyang, Guiyang, China.
Objective: Sepsis is a common and life-threatening syndrome in intensive care units, frequently accompanied by myocardial dysfunction, which significantly worsens patient outcomes. S100A12, a calcium-binding protein associated with inflammation, is upregulated in various inflammatory conditions. However, its role in sepsis and related cardiac injury remains unclear.
View Article and Find Full Text PDFInfect Drug Resist
September 2025
Department of Emergency, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China.
Introduction: Severe community-acquired pneumonia (SCAP) in immunocompromised patients is often caused by rare atypical pathogens, which are difficult to detect using conventional microbiological tests (CMTs) and can progress to sepsis in severe cases. Metagenomic next-generation sequencing (mNGS), an emerging pathogen detection technique, enables rapid identification of mixed infections and provides valuable guidance for clinical treatment decisions. SCAP-induced sepsis caused by a six-pathogen co-infection has not been previously reported, but interpretation remains a challenge.
View Article and Find Full Text PDF