Plumbagin accelerates serum albumin's amyloid aggregation kinetics and generates fibril polymorphism by inducing non-native β-sheet structures.

Biochim Biophys Acta Proteins Proteom

Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India. Electronic address:

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ligand-induced conformational switch of proteins has great significance in understanding the biophysics and biochemistry of their self-assembly. In this work, we have investigated the ability of plumbagin (PL), a hydroxynaphthoquinone compound found in the root of the medicinal plant Plumbago zeylanica, to modulate aggregation precursor state, aggregation kinetics and generate distinct fibril of human serum albumin (HSA). PL was found to moderately bind (binding constant K ∼ 10 M)) to domain-II of HSA in the stoichiometric ratio of 1:1. We found that PL-HSA complex aggregation was accelerated as compared to that of HSA aggregation and it may be through an independent pathway. We also detected that fibril produced in the presence of PL is wider in diameter, contains a higher amount of β-sheet (∼18%) and disordered (∼46%) structures, and is less stable. We concluded that the acceleration of aggregation reaction and generation of fibril polymorphism was mainly because of the higher extent of unfolding and high content of non-native β-sheet structure in the aggregation precursor state of PL-HSA complex. This study offers opportunities to explore the ability of ligand binding to modulate aggregation reactions and generate polymorphic protein fibrils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2024.141028DOI Listing

Publication Analysis

Top Keywords

aggregation
8
aggregation kinetics
8
fibril polymorphism
8
non-native β-sheet
8
modulate aggregation
8
aggregation precursor
8
precursor state
8
pl-hsa complex
8
plumbagin accelerates
4
accelerates serum
4

Similar Publications

The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.

View Article and Find Full Text PDF

In-vivo evidence of synucleinopathy in parkinsonism due to VCP mutation.

J Neural Transm (Vienna)

September 2025

Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40139, Italy.

Multisystem proteinopathy 1 (MSP1) is a rare autosomal dominant disorder caused by mutations in the valosin-containing protein (VCP) gene typically presenting with inclusion body myopathy (IBM), Paget's disease of bone (PDB), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Parkinsonism is a rare feature of MSP1, occurring in 3-4% of cases, with limited post-mortem evidence suggesting neuronal synucleinopathy. We report a case of VCP-related parkinsonism providing the first in vivo demonstration of phosphorylated alpha-synuclein deposition in skin biopsy, a highly sensitive and specific in vivo biomarker of synucleinopathy.

View Article and Find Full Text PDF

Development of smartphone-based AIE fluorescence-quenching immunochromatographic sensors for the detection of illicit drugs in various complex sample matrices.

Anal Bioanal Chem

September 2025

GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.

Illicit drug abuse poses a significant global threat to public health and social security, highlighting the urgent need for rapid, sensitive, and versatile detection technologies. To address the limitations of traditional chromatographic techniques-such as high costs and slow response times-and the drawbacks of conventional immunochromatographic sensors (ICS), including low sensitivity and non-intuitive signal outputs, a fluorescence-quenching ICS (FQICS) was developed. This sensor leverages fluorescence resonance energy transfer (FRET) between aggregation-induced emission fluorescent microspheres (AIEFMs) and gold nanoparticles (AuNPs).

View Article and Find Full Text PDF

Amino acids (AAs) have a long history of being used as stabilizers for biological media. For example, they are important components in biomedical formulations. The effect of AAs on biological systems is also starting to be appreciated.

View Article and Find Full Text PDF

We built a custom device to subject an antibody fragment A33 Fab to controlled stress conditions that combined pH, temperature, agitation, and LED-based light exposure in polypropylene microplates; to simulate the real-world challenges it may encounter during storage and transportation and to evaluate the key degradation routes in Fab formulations. We also explored the addition of Tween 80 as a surfactant and the impact of plate surface siliconisation. Monomer loss and fragmentation was monitored by size-exclusion chromatography, aggregate formation determined by changes in hydrodynamic radius in DLS, and chemical modifications identified through intact mass analysis by LC-MS, and N-terminal sequencing.

View Article and Find Full Text PDF