A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identification of a metabolism-linked genomic signature for prognosis and immunotherapeutic efficiency in metastatic skin cutaneous melanoma. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metastatic skin cutaneous melanoma (MSCM) is the most rapidly progressing/invasive skin-based malignancy, with median survival rates of about 12 months. It appears that metabolic disorders accelerate disease progression. However, correlations between metabolism-linked genes (MRGs) and prognosis in MSCM are unclear, and potential mechanisms explaining the correlation are unknown. The Cancer Genome Atlas (TCGA) was utilized as a training set to develop a genomic signature based on the differentially expressed MRGs (DE-MRGs) between primary skin cutaneous melanoma (PSCM) and MSCM. The Gene Expression Omnibus (GEO) was utilized as a validation set to verify the effectiveness of genomic signature. In addition, a nomogram was established to predict overall survival based on genomic signature and other clinic-based characteristics. Moreover, this study investigated the correlations between genomic signature and tumor micro-environment (TME). This study established a genomic signature consisting of 3 genes (CD38, DHRS3, and TYRP1) and classified MSCM patients into low and high-risk cohorts based on the median risk scores of MSCM cases. It was discovered that cases in the high-risk cohort had significantly lower survival than cases in the low-risk cohort across all sets. Furthermore, a nomogram containing this genomic signature and clinic-based parameters was developed and demonstrated high efficiency in predicting MSCM case survival times. Interestingly, Gene Set Variation Analysis results indicated that the genomic signature was involved in immune-related physiological processes. In addition, this study discovered that risk scoring was negatively correlated with immune-based cellular infiltrations in the TME and critical immune-based checkpoint expression profiles, indicating that favorable prognosis may be influenced in part by immunologically protective micro-environments. A novel 3-genomic signature was found to be reliable for predicting MSCM outcomes and may facilitate personalized immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155616PMC
http://dx.doi.org/10.1097/MD.0000000000038347DOI Listing

Publication Analysis

Top Keywords

genomic signature
32
skin cutaneous
12
cutaneous melanoma
12
signature
9
genomic
8
metastatic skin
8
signature clinic-based
8
predicting mscm
8
mscm
7
identification metabolism-linked
4

Similar Publications