98%
921
2 minutes
20
Background: With the advancement of artificial intelligence technology and radiomics analysis, opportunistic prediction of osteoporosis with computed tomography (CT) is a new paradigm in osteoporosis screening. This study aimed to assess the diagnostic performance of osteoporosis prediction by the combination of autosegmentation of the proximal femur and machine learning analysis with a reference standard of dual-energy X-ray absorptiometry (DXA).
Methods: Abdomen-pelvic CT scans were retrospectively analyzed from 1,122 patients who received both DXA and abdomen-pelvic computed tomography (APCT) scan from January 2018 to December 2020. The study cohort consisted of a training cohort and a temporal validation cohort. The left proximal femur was automatically segmented, and a prediction model was built by machine-learning analysis using a random forest (RF) analysis and 854 PyRadiomics features. The technical success rate of autosegmentation, diagnostic test, area under the receiver operator characteristics curve (AUC), and precision recall curve (AUC-PR) analysis were used to analyze the training and validation cohorts.
Results: The osteoporosis prevalence of the training and validation cohorts was 24.5%, and 10.3%, respectively. The technical success rate of autosegmentation of the proximal femur was 99.7%. In the diagnostic test, the training and validation cohorts showed 78.4% 63.3% sensitivity, 89.4% 98.1% specificity. The prediction performance to identify osteoporosis within the groups used for training and validation cohort was high and the AUC and AUC-PR to forecast the occurrence of osteoporosis within the training and validation cohorts were 90.8% [95% confidence interval (CI), 88.4-93.2%] 78.0% (95% CI, 76.0-79.9%) and 94.6% (95% CI, 89.3-99.8%) 88.8% (95% CI, 86.2-91.5%), respectively.
Conclusions: The osteoporosis prediction model using autosegmentation of proximal femur and machine-learning analysis with PyRadiomics features on APCT showed excellent diagnostic feasibility and technical success.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151236 | PMC |
http://dx.doi.org/10.21037/qims-23-1751 | DOI Listing |
JMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Department of Chemistry, Delaware State University, Dover, Delaware 19901, United States.
The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.
View Article and Find Full Text PDFEur J Gastroenterol Hepatol
August 2025
Department of Gastroenterology and Hepatology, Monash Health.
Background And Aims: Despite therapeutic advances, resection rates in Crohn's disease remain high. Kono-S is a novel anastomosis for ileocolonic resections; however, its altered configuration may challenge standard endoscopic assessment, particularly in the absence of validated scoring tools. This study evaluated the endoscopic assessment of Kono-S anastomosis anatomy and recurrence stratification using Rutgeert's score.
View Article and Find Full Text PDFJ Cataract Refract Surg
July 2025
Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu City, Sichuan Province, China.
Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.
Setting: West China Hospital of Sichuan University, China.
Design: Deep-learning study.