Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: This study aims to utilize PEGylated poly (lactic-co-glycolic acid) (PLGA) nanoparticles as a delivery system for simultaneous administration of the BRAF peptide, a tumor-specific antigen, and imiquimod (IMQ). The objective is to stimulate dendritic cell (DC) maturation, activate macrophages, and facilitate antigen presentation in C57BL6 mice.

Methods: PEG-PLGA-IMQ-BRAF nanoparticles were synthesized using a PLGA-PEG-PLGA tri-block copolymer, BRAF, and IMQ. Characterization included size measurement and drug release profiling. Efficacy was assessed in inhibiting BPD6 melanoma cell growth and activating immature bone marrow DCs, T cells, macrophages, and splenocyte cells through MTT and ELISA assays. In vivo, therapeutic and immunogenic effects potential was evaluated, comparing it to IMQ + BRAF and PLGA-IMQ-BRAF nanoparticles in inhibiting subcutaneous BPD6 tumor growth.

Results: The results highlight the successful synthesis of PEG-PLGA-IMQ-BRAF nanoparticles (203 ± 11.1 nm), releasing 73.4% and 63.2% of IMQ and BARF, respectively, within the initial 48 h. In vitro, these nanoparticles demonstrated a 1.3-fold increase in potency against BPD6 cells, achieving ~ 2.8-fold enhanced cytotoxicity compared to PLGA-IMQ-BRAF. Moreover, PEG-PLGA-IMQ-BRAF exhibited a 1.3-fold increase in potency for enhancing IMQ cytotoxic effects and a 1.1- to ~ 2.4-fold increase in activating DCs, T cells, macrophages, and splenocyte cells compared to IMQ-BRAF and PLGA-IMQ-BRAF. In vivo, PEG-PLGA-IMQ-BRAF displayed a 1.3- to 7.5-fold increase in potency for inhibiting subcutaneous BPD6 tumor growth compared to the other formulations.

Conclusions: The findings suggest that PEG-PLGA nanoparticles effectively promote DC maturation, T cell activation, and potentially macrophage activation. The study highlights the promising role of this nanocomposite in vaccine development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-024-03722-1DOI Listing

Publication Analysis

Top Keywords

increase potency
12
peg-plga-imq-braf nanoparticles
8
dcs cells
8
cells macrophages
8
macrophages splenocyte
8
splenocyte cells
8
inhibiting subcutaneous
8
subcutaneous bpd6
8
bpd6 tumor
8
13-fold increase
8

Similar Publications

This study aimed to synthesize and evaluate the anticancer activity of novel chalcone derivative against colon cancer by in vitro cytotoxicity against HCT-116 (Research Resource Identifiers:CVCL_D4JB) cell line and in vivo using EAC (Research Resource Identifiers: CVCL_1306) and DLA (Research Resource Identifiers: CVCL_VR37) cells inoculated Swiss albino mice. The present study aimed to synthesize the new chalcone derivatives and conduct its anti-colon cancer activity both in vitro and in vivo. The designed compounds were subjected to in silico studies like binding pocket analysis, molecular docking, and ADME studies.

View Article and Find Full Text PDF

Introduction: Tenvermectin (TVM) is a novel avermectin-class drug that has attracted attention for its superior antiparasitic potency, low toxicity, and broad-spectrum activity. However, uncertainty about its interaction with cytochrome P450 enzymes (CYPs) has raised concerns about potential therapeutic failure, increased risk of toxicity, dangerous drug combinations, and prolonged discontinuation periods.

Method: To address these critical safety concerns, we conducted a systematic comparative study using a highly selective and quantitatively accurate substrate conversion assay to assess and compare the effects of TVM and ivermectin (IVM) on the activities of key CYPs (CYP1A1/2, 2B1, 2C6, 2D2, and 3A1/2).

View Article and Find Full Text PDF

Ribonucleotide reductase (RR) is the rate-limiting enzyme for NTPs conversion into dNTPs, playing a central role in genome replication and maintenance. It is composed by two catalytic (RRM1) and two regulatory (alternatively RRM2 and p53R2) subunits, of which RRM2's functionality depends on a diferric center in the active site and is one of the most expressed genes in many tumors, among which Rhabdomyosarcoma (RMS), a rare and aggressive pediatric tumor. Didox (3,4-dihydroxy-benzohydroxamic acid) is a highly effective RRM2 inhibitor with iron chelating properties which shows fewer in vivo side effects than classical RR inhibitors.

View Article and Find Full Text PDF

Objective: Conventional penile venous surgery for erection restoration and surgery for penile augmentation have been controversial. Based on de novo penile fibrovascular assembly, we report innovative penile venous stripping (PVS) and factual penile girth enhancement (FPGE).

Methods: From 2013 to 2023, refractory impotence and dysmorphia prompted 31 patients to seek PVS and FPGE, and all of them were confirmed with veno-occlusive dysfunction.

View Article and Find Full Text PDF