Bacterial influenza is a significant global health and economic concern, and the effectiveness of current therapies is declining as bacterial resistance increases. This case emphasizes the need for novel therapeutic approaches. A target-based method was used in this study to investigate the RNA 2'-O-methyltransferase MTr1/TrmD, an important enzyme involved in the pathogenic bacteria's cap-snatching mechanism.
View Article and Find Full Text PDFDrug Dev Ind Pharm
September 2025
Objective: This study introduces a novel nanoemulsion (NE) system co-loaded with silibinin (SIL) and cabazitaxel (CBX) to address limitations, such as poor solubility, low bioavailability, and systemic toxicities of these agents.
Significance: SIL/CBX-loaded NE enhances the anticancer effects of SIL/CBX against prostate cancer (PCa) and , while it could simultaneously reduce the systemic toxicity of SIL/CBX.
Methods: The NE-SIL/CBX was prepared using oleic acid as the oil phase, Tween-80 and Cremophor RH40 as the surfactants, and Transcutol HP as the cosurfactant.
This study evaluates the potential of gentamicin (GEN) and doxycycline (DOX) co-loaded solid lipid nanoparticles (SLNs) for treating Brucella abortus infections. Optimized SLN formulations demonstrated mean particle sizes of 211.2 ± 10.
View Article and Find Full Text PDFThis study aimed to design polyethylene glycol (PEG)ylated chitosan (CS, PEG-CS) nanoparticles for the co-delivery of doxorubicin (DOX), cytosine-phosphate-guanine oligodeoxynucleotide (CpG), and ovalbumin (OVA) to enhance breast cancer therapy. PEG-CS nanoparticles were synthesized using the ionotropic gelation method and characterized for size, zeta potential (ZP), entrapment efficiency, and drug release. In vitro and in vivo studies were conducted to assess cytotoxicity, immune activation, and antitumor efficacy.
View Article and Find Full Text PDFThe COVID-19-2024 is one of the most frequently occurring illnesses worldwide. One of the symptoms of COVID-19 is sever cough. This study presents a novel first derivative synchronous spectrofluorimetric method that is rapid, highly sensitive, cost-effective, and environmentally safe for determining two coformulated anticough drugs, dextromethorphan and guaifenesin, simultaneously.
View Article and Find Full Text PDFObjective: This study presents the characterization and evaluation of polyethylene glycol (PEG)-coated liposomal formulations loaded with turmeric (TUR) and cinnamon (CINN) extracts for the treatment of bacterial infections.
Significance: TUR/CINN-loaded PEGylated liposomes enhance the antibacterial effects of TUR and CINN both and
Methods: PEGylated liposomes loaded with TUR and CINN were synthesized using the reverse-phase evaporation method and characterized by dynamic light scattering and spectrophotometry. The formulations were also evaluated for biocompatibility, permeability, and antibacterial efficacy in both and environments.
This study presents nanostructured lipid carrier (NLC) co-loaded with Docetaxel (DCT) and 5-Fluorouracil (5-FU) as a targeted therapeutic approach for gastric cancer (GC). Using nanoprecipitation, NLC-DCT/5-FU were synthesized and exhibited an average particle size of 215.3 ± 10.
View Article and Find Full Text PDFUnlabelled: This study investigates the synthesis and radiolabeling of zeolitic imidazolate frameworks (ZIF-8) with the radioisotope technetium-99 m (Tc) using a solvothermal method in methanol. The methanolic medium facilitated the formation of nanoparticles with favorable characteristics, including a smaller particle size (198 ± 9.8 nm) and a low polydispersity index (PDI = 0.
View Article and Find Full Text PDFFront Pharmacol
September 2024
Hesperidin (Hes) protects different organs from damage by acting as a potent antioxidant and anti-inflammatory. This study aims to evaluate the gastroprotective effects of free hesperidin and its chitosan nanoparticles (HNPs) against ethanol-induced gastric ulcers in rats, hypothesizing that HNPs will enhance bioavailability and therapeutic efficacy due to improved solubility and targeted delivery. HNPs were synthesized via ion gelation and characterized using TEM, SEM, and zeta potential analyses.
View Article and Find Full Text PDFObjective: This study aims to utilize PEGylated poly (lactic-co-glycolic acid) (PLGA) nanoparticles as a delivery system for simultaneous administration of the BRAF peptide, a tumor-specific antigen, and imiquimod (IMQ). The objective is to stimulate dendritic cell (DC) maturation, activate macrophages, and facilitate antigen presentation in C57BL6 mice.
Methods: PEG-PLGA-IMQ-BRAF nanoparticles were synthesized using a PLGA-PEG-PLGA tri-block copolymer, BRAF, and IMQ.
Background: In India, the cosmetics industry has expanded significantly because of changing lifestyles and increased awareness. In terms of earning the most money from the personal care and cosmetics industry in 2021, India is ranked fourth globally. Many cosmetics sold in India include ingredients that cannot be used on humans.
View Article and Find Full Text PDFThis review highlights the transformative impact of microfluidic technology on personalized drug delivery. Microfluidics addresses issues in traditional drug synthesis, providing precise control and scalability in nanoparticle fabrication, and microfluidic platforms show high potential for versatility, offering patient-specific dosing and real-time monitoring capabilities, all integrated into wearable technology. Covalent conjugation of antibodies to nanoparticles improves bioactivity, driving innovations in drug targeting.
View Article and Find Full Text PDFIn this review, we highlight the potential of stimuli-responsive drug delivery systems (DDSs) to revolutionize healthcare. Through examining pH, temperature, enzyme, and redox responsiveness, the presented case studies highlight the precision and enhanced therapeutic outcomes achievable with these innovative systems. Challenges, such as complex design and bio-based material optimization, underscore the complete journey from bench to bedside.
View Article and Find Full Text PDFMusculoskeletal pain and inflammation can vary from localised pain like pain in the shoulders and neck to widespread pain like fibromyalgia, and as per estimates, around 90% of humans have experienced such pain. Oral non-steroidal anti-inflammatory drugs (NSAIDs) are frequently prescribed for such conditions but are associated with concerns like gastric irritation and bleeding. In the present study, a microemulsion-based gel comprising β-caryophyllene, isopropyl myristate, Tween 80, and normal saline was prepared as a topical option for managing topical pain and inflammation.
View Article and Find Full Text PDFIn the 21st century, melanoma and non-melanoma skin cancers have become an epidemic outbreak worldwide. Therefore, the exploration of all potential preventative and therapeutic measures based on either physical or bio-chemical mechanisms is essential via understanding precise pathophysiological pathways (Mitogen-activated protein kinase, Phosphatidylinositol 3-kinase Pathway, and Notch signaling pathway) and other aspects of such skin malignancies. Nano-gel, a three-dimensional polymeric cross-linked porous hydrogel having a diameter of 20-200 nm, possesses dual properties of both hydrogel and nanoparticle.
View Article and Find Full Text PDFSortase A (SrtA) is an enzyme which attaches proteins, including virulence factors, to bacterial cell walls. It is a potential target for developing anti-virulence agents against pathogenic and antimicrobial resistant bacteria. This study aimed to engineer 𝛽-lactoglobulin protein nanoparticles (PNPs) for encapsulating safe and inexpensive natural SrtA inhibitors (SrtAIs; -chalcone (TC), curcumin (CUR), quercetin (QC), and berberine (BR)) to improve their poor aqueous dispersibility, to screen for synergy with antimicrobial peptides (AMPs), and to reduce the cost, dose, and toxicity of AMPs.
View Article and Find Full Text PDFThis study aimed to develop synergistic therapies to treat superbug infections through the encapsulation of sortase A inhibitors (SrtAIs; -chalcone (TC), curcumin (CUR), quercetin (QC), or berberine chloride (BR)) into MCM-41 mesoporous silica nanoparticles (MSNs) or a phosphonate-modified analogue (MCM-41-PO) to overcome their poor aqueous solubility. A resazurin-modified minimum inhibitory concentration (MIC) and checkerboard assays, to measure SrtAI synergy in combination with leading antimicrobial peptides (AMPs; pexiganan (PEX), indolicidin (INDO), and [I5, R8] mastoparan (MASTO)), were determined against methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) , , and . The results demonstrated that the MCM-41 and MCM-41-PO formulations significantly improved the aqueous solubility of each SrtAI.
View Article and Find Full Text PDFIncreasing antimicrobial resistance is a major global health concern. Conventional antibiotics apply selection pressures, which promote the accumulation of resistant microbes. Anti-virulence strategies, in contrast, are less potent antimicrobials, but are less likely to select for resistance, can be combined with existing antibiotics to improve their activity, and in some cases can overcome antimicrobial resistance towards other antimicrobials.
View Article and Find Full Text PDFDrug Discov Today
September 2021
Virulence factor, sortase A (SrtA), has crucial roles in the pathogenesis of Gram-positive superbugs. SrtA is a bacterial cell membrane enzyme that anchors crucial virulence factors to the cell wall surface of Gram-positive bacteria. SrtA is not necessary for bacterial growth and viability and is conveniently accessible in the cell membrane; therefore, it is an ideal target for antivirulence drug development.
View Article and Find Full Text PDF