98%
921
2 minutes
20
As well-known, microalgae have a pivotal role in aquatic environments, being the primary producer. In this study, we investigated the effects of Bisphenol A (BPA) analogues on cell ultrastructure, reactive oxygen species (ROS) production and photosynthetic pigment responses in the diatom Phaeodactylum tricornutum. Microalgae were exposed during both exponential and stationary growth phases to an environmental relevant concentration (300 ng/L) of three differing BPA analogues (BPAF, BPF, and BPS) and their mixture (100 ng/L of each compound). Bioaccumulation of such compounds in microalgae was also analysed. During the stationary growth phase, a significant increase in the percentage of cells with hydrogen peroxide production was recorded after exposure to both BPS and MIX. Conversely, no significant effects on total chlorophylls and carotenoids were observed. During exponential growth phase we observed that control cultures had chloroplasts with well-organized thylakoid membranes and a central pyrenoid. On the contrary, the culture cells treated with BPA analogues and MIX showed chloroplasts characterized by evident dilation of thylakoid membranes. The presence of degeneration areas in the cytoplasm was also recorded. During the stationary growth phase, control and culture cells were characterized by chloroplasts with a regular thylakoid system, whereas BPA analogues-exposed cells were characterized by a deep degradation of the cytoplasm but showed chloroplasts without evident alterations of the thylakoid system. Lipid bodies were visible in treated microalgae. Lastly, microalgae bioaccumulated mainly BPS and BPF, alone or in the MIX. Overall, results obtained revealed that BPA analogues can affect some important biochemical and ultrastructure features of microalgae, promoting ROS production. Lastly, the capability of microalgae to bioaccumulate bisphenols suggest a potential ecotoxicological risk for filter-feeders organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2024.106970 | DOI Listing |
Bisphenol A (BPA) and its analogs are collectively termed bisphenol compounds (BPs), which are predominantly utilized in the manufacturing of polycarbonate plastics and epoxy resins. BPs are ubiquitous in diverse environmental matrices, human tissues, and metabolic products. Extensive research has demonstrated that BPs exert adverse effects on the nervous, reproductive, immune, and metabolic systems.
View Article and Find Full Text PDFMar Environ Res
August 2025
Istanbul University, Institute of Marine Science and Management, Vefa, 34134, Istanbul, Turkey.
Bisphenol analogues and phthalate acid esters are well-known endocrine disruptors. Information on detailed distribution and partitioning of Bisphenol A (BPA) and Phthalate acid esters (PAEs) in port sediments is essential for a better understanding of their residence time in sediment, influence of anthropogenic activities in port, and port sustainability, especially in terms of environmental impact. Herein, this study determined the concentrations of BPA and PAEs in sediments that are collected from 38 stations from Istanbul ship-ports and scrutinized distribution, possible source identification and potential environmental risk assessment.
View Article and Find Full Text PDFLife (Basel)
July 2025
Laboratory of Toxicology and Risk Assessment, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
Bisphenol A (BPA) is an endocrine-disrupting chemical with estrogen-like activity, known to impair immune function. BPA may act as a pro-inflammatory agent, reducing immune response efficacy, increasing bacterial load in E. coli infections, and altering immune responses in parasitic infections (Leishmania major, Nippostrongylus brasiliensis, Toxocara canis) through cytokine and regulatory T-cell modulation.
View Article and Find Full Text PDFBiomedicines
August 2025
First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece.
: Bisphenols (BPs) and especially bisphenol S (BPS), an analog of bisphenol A (BPA), are widely used and induce oxidative stress, resulting in the inhibition of cell proliferation and induction of apoptosis which all are crucial for reproduction, the progression of pregnancy, and fertility. The present study integrates trophoblastic cells as an in vitro model to provide evidence and investigate the molecular interactions regarding placenta-related pregnancy complications after cytotoxic exposure to BPS. : Human endometrial epithelial adenocarcinoma Ishikawa cell lines and trophoblastic cells were cultured.
View Article and Find Full Text PDFSci Rep
August 2025
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, People's Republic of China.
In modern Boron neutron capture therapy (BNCT) treatment planning, F-BPA (F-boronophenylalanine) PET (positron emission tomography) imaging is used to assess boron uptake and guide accurate dose delivery. This study evaluates the geometric and dosimetric differences between target volumes defined by MRI (magnetic resonance imaging) and PET images in accelerator-based BNCT using the NeuPex system. The GTV (gross tumor volume) was defined based on MRI (GTV) and PET images with SUV thresholds of 2.
View Article and Find Full Text PDF