Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Meta-learning aims to leverage prior knowledge from related tasks to enable a base learner to quickly adapt to new tasks with limited labeled samples. However, traditional meta-learning methods have limitations as they provide an optimal initialization for all new tasks, disregarding the inherent uncertainty induced by few-shot tasks and impeding task-specific self-adaptation initialization. In response to this challenge, this article proposes a novel probabilistic meta-learning approach called prototype Bayesian meta-learning (PBML). PBML focuses on meta-learning variational posteriors within a Bayesian framework, guided by prototype-conditioned prior information. Specifically, to capture model uncertainty, PBML treats both meta- and task-specific parameters as random variables and integrates their posterior estimates into hierarchical Bayesian modeling through variational inference (VI). During model inference, PBML employs Laplacian estimation to approximate the integral term over the likelihood loss, deriving a rigorous upper-bound for generalization errors. To enhance the model's expressiveness and enable task-specific adaptive initialization, PBML proposes a data-driven approach to model the task-specific variational posteriors. This is achieved by designing a generative model structure that incorporates prototype-conditioned task-dependent priors into the random generation of task-specific variational posteriors. Additionally, by performing latent embedding optimization, PBML decouples the gradient-based meta-learning from the high-dimensional variational parameter space. Experimental results on benchmark datasets for few-shot image classification illustrate that PBML attains state-of-the-art or competitive performance when compared to other related works. Versatility studies demonstrate the adaptability and applicability of PBML in addressing diverse and challenging few-shot tasks. Furthermore, ablation studies validate the performance gains attributed to the inference and model components.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3403865DOI Listing

Publication Analysis

Top Keywords

variational posteriors
12
prototype bayesian
8
bayesian meta-learning
8
few-shot image
8
image classification
8
few-shot tasks
8
pbml
8
inference model
8
task-specific variational
8
meta-learning
7

Similar Publications

In the gravitational-wave analysis of pulsar-timing-array datasets, parameter estimation is usually performed using Markov chain Monte Carlo methods to explore posterior probability densities. We introduce an alternative procedure that instead relies on stochastic gradient-descent Bayesian variational inference, whereby we obtain the weights of a neural-network-based approximation of the posterior by minimizing the Kullback-Leibler divergence of the approximation from the exact posterior. This technique is distinct from simulation-based inference with normalizing flows since we train the network for a single dataset, rather than the population of all possible datasets, and we require the computation of the data likelihood and its gradient.

View Article and Find Full Text PDF

With the rise of short video content, efficient video summarization techniques for extracting key information have become crucial. However, existing methods struggle to capture the global temporal dependencies and maintain the semantic coherence of video content. Additionally, these methods are also influenced by noise during multi-channel feature fusion.

View Article and Find Full Text PDF

In real-world networks, node attributes are often only partially observed, necessitating imputation to support analysis or enable downstream tasks. However, most existing imputation methods overlook the rich information contained within the connectivity among nodes. This research is inspired by the premise that leveraging all available information should yield improved imputation, provided a sufficient association between attributes and edges.

View Article and Find Full Text PDF

Active inference offers a unified framework in which agents can exhibit both goal-directed and epistemic behaviors. However, implementing policy search in high-dimensional continuous action spaces presents challenges in terms of scalability and stability. Our previously proposed model, T-GLean, addressed this issue by enabling efficient goal-directed planning through low-dimensional latent space search, further reduced by conditioning on prior habituated behavior.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs), particularly the P300 BCI, facilitate direct communication between the brain and computers. The fundamental statistical problem in P300 BCIs lies in classifying target and non-target stimuli based on electroencephalogram (EEG) signals. However, the low signal-to-noise ratio (SNR) and complex spatial/temporal correlations of EEG signals present challenges in modeling and computation, especially for individuals with severe physical disabilities-BCI's primary users.

View Article and Find Full Text PDF