Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lenia, a cellular automata framework used in artificial life, provides a natural setting to implement mathematical models of cancer incorporating features such as morphogenesis, homeostasis, motility, reproduction, growth, stimuli response, evolvability, and adaptation. Historically, agent-based models of cancer progression have been constructed with rules that govern birth, death and migration, with attempts to map local rules to emergent global growth dynamics. In contrast, Lenia provides a flexible framework for considering a spectrum of local (cell-scale) to global (tumor-scale) dynamics by defining an interaction kernel governing density-dependent growth dynamics. Lenia can recapitulate a range of cancer model classifications including local or global, deterministic or stochastic, non-spatial or spatial, single or multi-population, and off or on-lattice. Lenia is subsequently used to develop data-informed models of 1) single-population growth dynamics, 2) multi-population cell-cell competition models, and 3) cell migration or chemotaxis. Mathematical modeling provides important mechanistic insights. First, short-range interaction kernels provide a mechanism for tumor cell survival under conditions with strong Allee effects. Next, we find that asymmetric interaction tumor-immune kernels lead to poor immune response. Finally, modeling recapitulates immune-ECM interactions where patterns of collagen formation provide immune protection, indicated by an emergent inverse relationship between disease stage and immune coverage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142313PMC
http://dx.doi.org/10.21203/rs.3.rs-3962451/v1DOI Listing

Publication Analysis

Top Keywords

growth dynamics
12
models cancer
8
growth
5
spatial interactions
4
interactions modulate
4
modulate tumor
4
tumor growth
4
immune
4
growth immune
4
immune infiltration
4

Similar Publications

Crop growth rate is a critical physiological trait for forage and bioenergy crops like sorghum [Sorghum bicolor (L.) Moench], influencing overall crop productivity, particularly in photoperiod-sensitive (PS) types. Crop growth rate studies focus on either a physiological approach utilizing a few genotypes to analyze biomass accumulation or a genetic approach characterizing easily scorable proxy traits in larger populations.

View Article and Find Full Text PDF

Chemical gardens refer to a class of self-assembling structures of semi-permeable precipitates. They have been attracting significant interest due to their relevance to sub-oceanic hydrothermal vents and the origin of life. We have investigated the growth behaviour of chemical garden walls in a horizontal Hele-Shaw cell.

View Article and Find Full Text PDF

Biofilms-microbial communities encased in a self-produced extracellular matrix-pose a significant challenge in clinical settings due to their association with chronic infections and antibiotic resistance. Their formation in the human body is governed by a complex interplay of biological and environmental factors, including the biochemical composition of bodily fluids, fluid dynamics, and cell-cell and cell-surface interactions. Improving therapeutic strategies requires a deeper understanding of how host-specific conditions shape biofilm development.

View Article and Find Full Text PDF

Organ-Specific Shifts in Aerobic and Anaerobic Metabolism Throughout Metamorphosis Into Adulthood in a Fully Aquatic Amphibian.

FASEB J

September 2025

School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.

Most animals experience abrupt developmental transitions involving major tissue remodeling, but the links with metabolic changes remain poorly understood. We examined ontogenetic changes in mitochondrial volume, oxidative capacity, oxygen consumption capacity, and anaerobic capacity across four organs (gut, liver, heart, and hindlimb muscle) in Xenopus laevis from metamorphosis to adulthood. These organs differ in the extent of developmental transformation.

View Article and Find Full Text PDF

Sugar metabolism is commonly implicated as crucial in the transition between growth and cessation during winter; however, its exact role remains elusive. The evergreen iris (Iris japonica) ceases growth in winter without entering endodormancy, yet it continues to sustain sugar metabolism and transport throughout the season. Here, we elucidate the mechanisms underlying the sugar-mediated growth transition-the shift between growth and cessation-in I.

View Article and Find Full Text PDF