Integrated analysis of genomics and transcriptomics revealed the genetic basis for goaty flavor formation in goat milk.

Genomics

Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China. Electronic address:

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Goat milk exhibits a robust and distinctive "goaty" flavor. However, the underlying genetic basis of goaty flavor remains elusive and requires further elucidation at the genomic level. Through comparative genomics analysis, we identified divergent signatures of certain proteins in goat, sheep, and cow. MMUT has undergone a goat-specific mutation in the B12 binding domain. We observed the goat FASN exhibits nonsynonymous mutations in the acyltransferase domain. Structural variations in these key proteins may enhance the capacity for synthesizing goaty flavor compounds in goat. Integrated omics analysis revealed the catabolism of branched-chain amino acids contributed to the goat milk flavor. Furthermore, we uncovered a regulatory mechanism in which the transcription factor ZNF281 suppresses the expression of the ECHDC1 gene may play a pivotal role in the accumulation of flavor substances in goat milk. These findings provide insights into the genetic basis underlying the formation of goaty flavor in goat milk. STATEMENT OF SIGNIFICANCE: Branched-chain fatty acids (BCFAs) play a crucial role in generating the distinctive "goaty" flavor of goat milk. Whether there is an underlying genetic basis associated with goaty flavor is unknown. To begin deciphering mechanisms of goat milk flavor development, we collected transcriptomic data from mammary tissue of goat, sheep, cow, and buffalo at peak lactation for cross-species transcriptome analysis and downloaded nine publicly available genomes for comparative genomic analysis. Our data indicate that the catabolic pathway of branched-chain amino acids (BCAAs) is under positive selection in the goat genome, and most genes involved in this pathway exhibit significantly higher expression levels in goat mammary tissue compared to other species, which contributes to the development of flavor in goat milk. Furthermore, we have elucidated the regulatory mechanism by which the transcription factor ZNF281 suppresses ECHDC1 gene expression, thereby exerting an important influence on the accumulation of flavor compounds in goat milk. These findings provide insights into the genetic mechanisms underlying flavor formation in goat milk and suggest further research to manipulate the flavor of animal products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2024.110873DOI Listing

Publication Analysis

Top Keywords

goat milk
40
goaty flavor
20
genetic basis
16
goat
16
flavor
14
flavor goat
12
milk
10
basis goaty
8
flavor formation
8
formation goat
8

Similar Publications

Goat milk is prized for its nutritional value, but the illegal addition of δ-decanolactone to enhance flavor poses risks to product integrity and safety. This study employed a tripartite multi-omics framework integrating metabolomics, lipidomics, and proteomics, combined with FTIR and CLSM to systematically elucidate the multifaceted effects of δ-decanolactone on goat milk. Chemometric and bioinformatic pipelines identified dysregulated molecules and pathways, while molecular docking validated interactions with key targets.

View Article and Find Full Text PDF

Introduction: Identifying genetic markers associated with economically important traits in dairy goats helps enhance breeding efficiency, thereby increasing industry value. However, the potential genetic structure of key economic traits in dairy goats is still largely unknown.

Methods: This study used three genome-wide association study (GWAS) models (GLM, MLM, FarmCPU) to analyze dairy goat milk production traits (milk yield, fat percentage, protein percentage, lactose percentage, ash percentage, total dry matter, and somatic cell count).

View Article and Find Full Text PDF

Neospora caninum, Sarcocystis spp. and Toxoplasma gondii infections and their relationship with milk production in goats from Argentina.

Parasitol Int

September 2025

Immunoparasitology Laboratory, Faculty of Veterinary Science-La Plata National University, La Plata, 1900 Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires (C1425FQB), Argentina; Institute of Parasitology, University of Bern, Län

The apicomplexan protozoa Neospora caninum, Sarcocystis spp. and Toxoplasma gondii are worldwide distributed. Goat infections with these protozoans are frequent, although the relationship with milk production is unknown.

View Article and Find Full Text PDF

Effects of a commercial buckwheat rhizome flavonoid extract on milk production, plasma pro-oxidant and antioxidant, and the ruminal metagenome and metabolites in lactating dairy goats.

J Dairy Sci

September 2025

Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, Guizhou, China. Elec

Buckwheat is a common straw crop that contains an abundance of flavonoids and could be used as an antioxidant additive in animal diets. In this study, the effects of a commercial buckwheat rhizome flavonoid extract (BRFE) on milk production, plasma pro-oxidant and antioxidant, the ruminal metagenome, and ruminal metabolites in dairy goats were evaluated. Forty healthy, multiparous, nonpregnant Guanzhong dairy goats were blocked by DIM (122 ± 5.

View Article and Find Full Text PDF

The shapes of lactation curves are affected by genetic and environmental factors, and flexible models are required to fit such curves. This study aimed to compare the effects of the Gaussian process regression model (Gaussian model) for fitting lactation curves Saanen dairy goats versus the parametric Wood's model. In addition, we investigated effects of environmental factors on the shape of lactation curves.

View Article and Find Full Text PDF