98%
921
2 minutes
20
Background: There are currently many imaging indicators for idiopathic normal pressure hydrocephalus (iNPH). However, their diagnostic performance has not been well compared, especially in differentiating iNPH from Alzheimer's disease (AD). This study aimed to evaluate the diagnostic performance of these imaging indicators in differentiating iNPH from AD.
Methods: We retrospectively collected patients with iNPH from the West China Hospital between June 2016 and December 2023. Age-sex-matched patients with AD and healthy controls (HCs) are included as controls (ChiCTR2300070078, March 2023). Twelve imaging indicators were evaluated on MRI, including disproportionately enlarged subarachnoid space hydrocephalus (DESH), Evans' index (EI), callosal angle, z-EI, temporal horn, dilated Sylvian fissure, focal sulcal dilation, tight high convexity, deep white matter hyperintensities, periventricular hyperintensities, DESH scale, and Simplified Radscale. We analyzed the receiver operating characteristic curves and calculated the sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy.
Results: A total of 46 patients with iNPH (mean age: 73.1 ± 6.5; 35 males), 46 patients with AD (mean age: 73.0 ± 6.6; 35 males), and 46 HCs (mean age: 73.0 ± 5.9; 35 males) were included. The largest area under the receiver operating characteristic curve (AUC) was found in EI (0.93; 95 % CI: 0.89-0.98) and z-EI (0.93; 95 % CI: 0.87-0.98). DESH scale ≥ 6 had the highest specificity (93 %, 43/46).
Conclusion: EI and z-EI had the best diagnostic performance in differentiating iNPH from AD. The DESH scale could assist in diagnosing iNPH due to its high specificity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clineuro.2024.108362 | DOI Listing |
JAMA Psychiatry
September 2025
School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia.
Importance: Cannabis is the most commonly used illicit drug, with 10% to 30% of regular users developing cannabis use disorder (CUD), a condition linked to altered hippocampal integrity. Evidence suggests high-intensity interval training (HIIT) enhances hippocampal structure and function, with this form of physical exercise potentially mitigating CUD-related cognitive and mental health impairments.
Objective: To determine the impact of a 12-week HIIT intervention on hippocampal integrity (ie, structure, connectivity, biochemistry) compared with 12 weeks of strength and resistance (SR) training in CUD.
Ann Nucl Med
September 2025
Department of Nuclear Medicine, Marmara University School of Medicine, Istanbul, Turkey.
Objective: This study aims to systematically evaluate the inter- and intra-observer agreement regarding lesions with uncertain malignancy potential in Ga-68 PSMA PET/CT imaging of prostate cancer patients, utilizing the PSMA-RADS 2.0 classification system, and to emphasize the malignancy evidence associated with these lesions.
Methods: We retrospectively reviewed Ga-68 PSMA PET/CT images of patients diagnosed with prostate cancer via histopathology between December 2016 and November 2023.
Transl Stroke Res
September 2025
Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
Recent studies have shown that the glymphatic system plays a crucial role in driving hyperacute edema after ischemic stroke. This has sparked interest in understanding how this system changes in later phases of ischemic stroke. In this study, we utilized cisternal contrast-enhanced magnetic resonance imaging (CE-MRI) and immunofluorescence staining to investigate glymphatic system alterations at subacute and chronic phases of ischemic stroke.
View Article and Find Full Text PDFPhys Eng Sci Med
September 2025
Department of Radiology, Otaru General Hospital, Otaru, Hokkaido, Japan.
In lung CT imaging, motion artifacts caused by cardiac motion and respiration are common. Recently, CLEAR Motion, a deep learning-based reconstruction method that applies motion correction technology, has been developed. This study aims to quantitatively evaluate the clinical usefulness of CLEAR Motion.
View Article and Find Full Text PDFPhys Eng Sci Med
September 2025
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
This study introduces a novel optimization framework for cranial three-dimensional rotational angiography (3DRA), combining the development of a brain equivalent in-house phantom with Figure of Merit (FOM) a quantitative evaluation method. The technical contribution involves the development of an in-house phantom constructed using iodine-infused epoxy and lycal resins, validated against clinical Hounsfield Units (HU). A customized head phantom was developed to simulate brain tissue and cranial vasculature for 3DRA optimization.
View Article and Find Full Text PDF