Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Extracellular vesicles (EVs), crucial mediators of cell-to-cell communication, hold significant diagnostic potential due to their ability to concentrate protein biomarkers in bodily fluids. However, challenges in isolating EVs from biological specimens hinder their widespread use. The preferred strategy involves direct analysis, integrating isolation and analysis solutions, with immunoaffinity methods currently dominating. Yet, the heterogeneous nature of EVs poses challenges, as proposed markers may not be as universally present as thought, raising concerns about biomarker screening reliability. This issue extends to EV-mimics, where conventional methods may lack applicability. Addressing these challenges, the study reports on Membrane Sensing Peptides (MSP) as pan-vesicular affinity ligands for both EVs and their non-canonical analogs, streamlining capture and phenotyping through Single Molecule Array (SiMoA). MSP ligands enable direct analysis of circulating EVs, eliminating the need for prior isolation. Demonstrating clinical translation, MSP technology detects an EV-associated epitope signature in serum and plasma, distinguishing myocardial infarction from stable angina. Additionally, MSP allow analysis of tetraspanin-lacking Red Blood Cell-derived EVs, overcoming limitations associated with antibody-based methods. Overall, the work underlines the value of MSP as complementary tools to antibodies, advancing EV analysis for clinical diagnostics and beyond, and marking the first-ever peptide-based application in SiMoA technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304302PMC
http://dx.doi.org/10.1002/advs.202400533DOI Listing

Publication Analysis

Top Keywords

direct analysis
12
extracellular vesicles
8
membrane sensing
8
sensing peptides
8
pan-vesicular affinity
8
analysis
6
evs
6
msp
5
addressing heterogeneity
4
heterogeneity direct
4

Similar Publications

The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.

View Article and Find Full Text PDF

The argan tree (Argania spinosa L. Skeels), native to the sub-Saharan region of Morocco, is an endangered agroforestry species renowned for producing one of the world's most expensive and sought-after oils. However, this valuable resource is threatened by the Mediterranean fruit fly (Ceratitis capitata (Wied.

View Article and Find Full Text PDF

Patients with acquired and congenital heart disease (CHD) are at higher risk of hospitalization. Despite quality improvement (QI) initiatives, many patients experience readmission soon after discharge. We aimed to identify risk factors for 30-day readmission and hypothesized that direct discharge from the cardiac intensive care unit (CICU) is associated with an increased readmission rate.

View Article and Find Full Text PDF

Pharmacological modulation of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) through dual GIP/GLP-1 receptor agonists, commonly used for diabetes and obesity, shows promise in reducing alcohol consumption. We applied drug-target Mendelian randomization (MR) using genetic variation at these loci to assess their long-term effects on problematic alcohol use (PAU), binge drinking, alcohol misuse classifications, liver health, and other substance use behaviors. Genetic proxies for lowered BMI, modeling the appetite-suppressing and weight-reducing effects of variants in both the GIPR and GLP1R loci ("GIPR/GLP1R"), were linked with reduced binge drinking in the primary (β = -0.

View Article and Find Full Text PDF

The tracked vehicle (TV) primarily operates on poor road surfaces, which means the vibration excitation of the road surface significantly impacts the driver's sighting efficiency and driving comfort. This is the cause of reduced vehicle combat efficiency. To address this, based on the dynamic interaction model between the TV, Seat, and Driver established in Matlab/Simulink software, all the dynamic parameters of the suspension system of the TV and seat are then simulated under different operation conditions of the TV.

View Article and Find Full Text PDF