TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites.

Brain Stimul

Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, 94305, CA, USA; Wu Tsai Neurosciences Institu

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Transcranial magnetic stimulation (TMS) is believed to alter ongoing neural activity and cause circuit-level changes in brain function. While the electrophysiological effects of TMS have been extensively studied with scalp electroencephalography (EEG), this approach generally evaluates low-frequency neural activity at the cortical surface. However, TMS can be safely used in patients with intracranial electrodes (iEEG), allowing for direct assessment of deeper and more localized oscillatory responses across the frequency spectrum.

Objective/hypothesis: Our study used iEEG to understand the effects of TMS on human neural activity in the spectral domain. We asked (1) which brain regions respond to cortically-targeted TMS, and in what frequency bands, (2) whether deeper brain structures exhibit oscillatory responses, and (3) whether the neural responses to TMS reflect evoked versus induced oscillations.

Methods: We recruited 17 neurosurgical patients with indwelling electrodes and recorded neural activity while patients underwent repeated trials of single-pulse TMS at either the dorsolateral prefrontal cortex (DLPFC) or parietal cortex. iEEG signals were analyzed using spectral methods to understand the oscillatory responses to TMS.

Results: Stimulation to DLPFC drove widespread low-frequency increases (3-8 Hz) in frontolimbic cortices and high-frequency decreases (30-110 Hz) in frontotemporal areas, including the hippocampus. Stimulation to parietal cortex specifically provoked low-frequency responses in the medial temporal lobe. While most low-frequency activity was consistent with phase-locked evoked responses, anterior frontal regions exhibited induced theta oscillations following DLPFC stimulation.

Conclusions: By combining TMS with intracranial EEG recordings, our results suggest that TMS is an effective means to perturb oscillatory neural activity in brain-wide networks, including deeper structures not directly accessed by stimulation itself.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313454PMC
http://dx.doi.org/10.1016/j.brs.2024.05.014DOI Listing

Publication Analysis

Top Keywords

neural activity
20
oscillatory responses
12
tms
10
effects tms
8
parietal cortex
8
neural
6
activity
6
responses
6
tms provokes
4
provokes target-dependent
4

Similar Publications

Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.

View Article and Find Full Text PDF

Goal-directed behavior requires adjusting cognitive control, both in preparation for and in reaction to conflict. Theta oscillations and population activity in dorsomedial prefrontal cortex (dmPFC) and dorsolateral PFC (dlPFC) are known to support reactive control. Here, we investigated their role in proactive control using human intracranial electroencephalogram (EEG) recordings during a Stroop task that manipulated conflict expectations.

View Article and Find Full Text PDF

Introduction: Spatial hearing enables both voluntary localization of sound sources and automatic monitoring of the surroundings. The auditory looming bias (ALB), characterized by the prioritized processing of approaching (looming) sounds over receding ones, is thought to serve as an early hazard detection mechanism. The bias could theoretically reflect an adaptation to the low-level acoustic properties of approaching sounds, or alternatively necessitate the sound to be localizable in space.

View Article and Find Full Text PDF

Understanding how athletes mentally simulate and anticipate actions provides key insights into experience-driven brain plasticity. While previous studies have investigated motor imagery and action anticipation separately, little is known about how their underlying neural mechanisms converge or diverge in expert performers. This study conducted a meta-analysis using activation likelihood estimation (ALE) and meta-analytic connectivity modeling (MACM) to compare brain activation patterns between athletes and non-athletes across both tasks.

View Article and Find Full Text PDF

Target the Heart: A New Axis of Alzheimer's Disease Prevention.

J Dement Alzheimers Dis

June 2025

Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.

Background/objective: Cyclosporine A and other calcineurin inhibitors have been identified as prospective treatments for preventing Alzheimer's disease. We previously found that calcineurin inhibitors elicit a unique behavioral profile in zebrafish larvae, characterized by increased activity, acoustic hyperexcitability, and reduced visually guided behaviors. Screening a large library of FDA-approved compounds using Z-LaP Tracker revealed that some heart medications produce a similar behavioral profile, suggesting these drugs may exert calcineurin-inhibitor-like effects relevant to prevent-ing or ameliorating Alzheimer's disease.

View Article and Find Full Text PDF