Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Interdiffusion and solid-solid phase reaction at the interface between thermoelectric (TE) materials and the electrode critically influence interfacial transport properties and the overall energy conversion efficiency during service. Here, the microstructural evolution and diffusion mechanisms at the interfaces between the most widely used BiTe-based TE materials, n-type BiTeSe (BTS) and p-type BiSbTe (BST), and Ni electrodes were investigated at atomic resolution using spherical aberration-corrected scanning transmission electron microscopy (STEM). The BTS(0001)/Ni and BST(0001)/Ni interfaces were constructed by depositing Ni nanoparticles on mechanically exfoliated BTS and BST bulk materials and subsequent annealing. The interfacial reaction is initially dominated by Ni diffusion into the TE matrix to form NiAs-type NiM intermetallics, while Ni trans-quintuple-layer diffusion only occurs in Sb-rich BST. The Bi-rich BTS is more influenced by the Ni-Te preferential reaction, resulting in NiM abnormal grain growth and the formation of tilted and rotated interfaces. Bi diffusion into the BTS matrix forms a Bi double layer at the interface or Bi[Bi(Te,Se)] as the annealing temperature increases, while Bi diffusion into the Ni thin film greatly accelerates the interfacial reaction rate, as elucidated by in situ heating STEM. The results provide essential structural details to understand and prevent the degradation of TE device performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c06274 | DOI Listing |