98%
921
2 minutes
20
The dual-focus vision observed in eagles' eyes is an intriguing phenomenon captivates scientists since a long time. Inspired by this natural occurrence, the authors' research introduces a novel bifocal meta-device incorporating a polarized camera capable of simultaneously capturing images for two different polarizations with slightly different focal distances. This innovative approach facilitates the concurrent acquisition of underfocused and overfocused images in a single snapshot, enabling the effective extraction of quantitative phase information from the object using the transport of intensity equation. Experimental demonstrations showcase the application of quantitative phase imaging to artificial objects and human embryonic kidney cells, particularly emphasizing the meta-device's relevance in dynamic scenarios such as laser-induced ablation in human embryonic kidney cells. Moreover, it provides a solution for the quantification during the dynamic process at the cellular level. Notably, the proposed eagle-eye inspired meta-device for phase imaging (EIMPI), due to its simplicity and compact nature, holds promise for significant applications in fields such as endoscopy and headsets, where a lightweight and compact setup is essential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202402751 | DOI Listing |
Anal Methods
September 2025
Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
This study introduces a new, highly sensitive, and reliable method for detecting and measuring orthophosphate in environmental water samples. This method combines cetyltrimethylammonium bromide (CTAB)-mediated coacervation extraction with digital image-based colorimetry, providing a robust and efficient approach for orthophosphate analysis. In this system, CTAB, a cationic surfactant, serves a dual role as both an ion-pairing agent and an extraction medium.
View Article and Find Full Text PDFStroke
September 2025
Department of Neurology, Yale School of Medicine, New Haven, CT (L.H.S.).
Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.
View Article and Find Full Text PDFDiagn Interv Radiol
September 2025
Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.
Purpose: To evaluate the feasibility of abbreviated liver magnetic resonance imaging (AMRI) with a second-shot arterial phase (SSAP) image for the viability of treated hepatocellular carcinoma (HCC) after non-radiation locoregional therapy (LRT).
Methods: We retrospectively enrolled patients with non-radiation LRT for HCC who underwent the modified gadoxetic acid-enhanced liver MRI protocol, which includes routine dynamic and SSAP imaging after the first and second injection of gadoxetic acid, respectively (6 mL and 4 mL, respectively), and an available reference standard for tumor viability in the treated HCC between March 2021 and February 2022. Two radiologists independently reviewed the full-protocol MRI (FP-MRI) and AMRI with SSAP.
Philos Trans A Math Phys Eng Sci
September 2025
School of Physics, Engineering & Technology, University of York, York, UK.
Microscopic swimmers, such as bacteria and archaea, are paradigmatic examples of active matter systems. The study of these systems has given rise to novel concepts such as rectification of bacterial swimmers, in which microstructures can passively separate swimmers from non-swimming, inert particles. Many bacteria and archaea swim using rotary molecular motors to drive helical propellers called flagella or archaella.
View Article and Find Full Text PDFCell Commun Signal
September 2025
Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Universitätsstr. 150, Building MA 5/52, Bochum, 44801, Germany.
Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.
Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.