98%
921
2 minutes
20
Epidermal growth factor receptor (EGFR) exon 20 insertion mutations (E20ins) are the third most frequent mutations observed in non-small cell lung cancer, accounting for approximately 1-10% of all EGFR mutations. In the era of precision medicine and targeted therapies, consistent naming of genetic alterations is crucial to avoid confusion and errors. However, the annotation of EGFR E20ins mutations has been inconsistent, leading to confusion in the scientific literature and product documentation. In this study, our primary objective was to investigate the usage of different annotation related to EGFR E20ins in independent studies. Additionally, we assessed the distribution of EGFR E20ins mutations and estimated the detection coverage expected from each available EGFR E20ins detection assay. A total of 1,418 EGFR E20ins mutations were collected from six studies (FoundationInsights, Geneseeq Technology Inc, mobocertinib phase I/II trial, poziotinib phase II trial, sunvozertinib phase I trial, and Samsung Medical Center) and reorganised according to Human Genome Variation Society (HGVS) nomenclature. Our analysis revealed that the majority of EGFR E20ins mutations requiring correction were 'insertion' or 'deletion-insertion', which should be appropriately designated as 'duplication'. Additionally, duplicated variants were reported using different annotations in each study, and furthermore, even identical variant sequences were annotated differently within the same study. In all six studies, p.A767_V769dup and p.S768_D770dup were the most frequently observed EGFR E20ins. The Oncomine Dx Target Test showed the highest patient coverage at 77.2%, followed by the Droplex EGFR Mutation Test v2 with a patient coverage of 70.5% for EGFR E20ins patients. To ensure comprehensive coverage in real-world settings, it is essential to standardise the annotations for each variant, for example using the HGVS nomenclature. The accurate classification and analysis of drug responsiveness in EGFR E20ins necessitate consideration of the nomenclature, particularly with respect to the locations where the actual mutations occur.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pathol.2024.02.012 | DOI Listing |
Pathology
August 2024
Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health
Cancer Res Treat
July 2024
Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
Mol Oncol
August 2020
Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
EGFR exon 20 insertions (EGFR e20ins) account for up to 10% of EGFR mutations in lung cancer; however, tumors with EGFR e20ins had poor response rates to EGFR tyrosine kinase inhibitors (TKIs) including gefitinib, erlotinib, afatinib, and osimertinib, and the heterogeneity of EGFR e20ins further complicates the clinical studies. Here, we retrospectively screened next-generation sequencing (NGS) data from 24 468 lung cancer patients, and a total of 85 unique EGFR e20ins variants were identified in 547 cases (2.24%), with p.
View Article and Find Full Text PDFSci Rep
April 2016
Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumour Research Institute, 97 Beiguan Machang Rd, Tongzhou District, Beijing, 101149, P.R. China.
The micropapillary (MP) subtype has recently been established to be a distinct marker of poor prognosis in lung adenocarcinomas (LACs). According to the 2015 WHO classification system, LAC constituents are required to be precisely reported. T790M mutation and an insertion in exon 20 (E20ins) are associated with EGFR-TKI resistance.
View Article and Find Full Text PDF