Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sodium-ion batteries (NIBs) have recently garnered significant interest in being employed alongside conventional lithium-ion batteries, particularly in applications where cost and sustainability are particularly relevant. The rapid progress in NIBs will undoubtedly expedite the commercialization process. In this regard, tailoring and designing electrolyte formulation is a top priority, as they profoundly influence the overall electrochemical performance and thermal, mechanical, and dimensional stability. Moreover, electrolytes play a critical role in determining the system's safety level and overall lifespan. This review delves into recent electrolyte advancements from liquid (organic and ionic liquid) to solid and quasi-solid electrolyte (dry, hybrid, and single ion conducting electrolyte) for NIBs, encompassing comprehensive strategies for electrolyte design across various materials, systems, and their functional applications. The objective is to offer strategic direction for the systematic production of safe electrolytes and to investigate the potential applications of these designs in real-world scenarios while thoroughly assessing the current obstacles and forthcoming prospects within this rapidly evolving field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202313572DOI Listing

Publication Analysis

Top Keywords

liquid solid
8
electrolyte
5
electrolytes sodium
4
sodium ion
4
ion batteries
4
batteries current
4
current transition
4
transition liquid
4
solid hybrid
4
hybrid systems
4

Similar Publications

Unlocking Nano-CSH and Silica Fume to Enhance the Performance of Alkali-Free Liquid Accelerators in Low-Temperature Environments.

Langmuir

September 2025

State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China.

This article is based on the research background of an early performance of shotcrete under low-temperature environments. Silica fume (SF) (silicon powder) and nano-CSH are used to improve the effect of the low-temperature environment on the performance of alkali-free (AF) liquid accelerators and early strength of shotcrete. The results show that the 10% SF and 3% nano-CSH composite admixture significantly enhances AF accelerators' performance at 5 °C, reducing initial and final setting times to 3.

View Article and Find Full Text PDF

Giant mobility of surface-trapped ionic charges following liquid tribocharging.

Proc Natl Acad Sci U S A

September 2025

Soft Matter Sciences and Engineering, CNRS, École supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Paris 75005, France.

The sliding motion of aqueous droplets on hydrophobic surfaces leads to charge separation at the trailing edge, with implications from triple-line friction to hydrovoltaic energy generation. Charges deposited on the solid surface have been attributed to ions or electrons ripped off from the liquid drop. However, the dynamics and exact physicochemical nature of these surface-trapped charges remains poorly explored.

View Article and Find Full Text PDF

A method for determination of ten kinds of sweeteners in soybean products by multi-plug filtration cleanup (-PFC) combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. The sample was extracted with acetonitrile (containing 1% formic acid), degreased by using -hexane liquid-liquid extraction and purified by solid phase extraction using an -PFC column (Oasis PRiME HLB). The analytes were separated by using a Waters ACQUITY UPLC® BEH C (2.

View Article and Find Full Text PDF

Transition of Structurally Distinct Amyloids in the Degradation of Protein Materials.

J Phys Chem B

September 2025

Chemistry Division, Code 6176, US Naval Research Laboratory, Washington, D.C. 20375, United States.

Amyloid materials are formed from the aggregation of single proteins, yet contain polymorphisms where bulk properties are defined by a composition of multiple fibril types. Though desirable as a sustainable material, little is known about how various fibril types survive at high temperatures or in nonpolar solvents due to their highly similar molecular and nanoscale features. Here, we demonstrate that in situ two-dimensional infrared spectroscopy (2DIR), when paired with nanoscale microscopy, can determine the transition temperature of amyloid subpopulations without the use of labels.

View Article and Find Full Text PDF

The supported catalytically active liquid metal solution (SCALMS) concept is based on catalytically active metals dissolved in a low-melting-point liquid metal matrix. These solid alloy particles, deposited over a high area support, transform into a liquid alloy under reaction conditions. In this work, GaPt SCALMS materials of varying composition are investigated and focus on the change in the alloy composition during preheating, the actual high temperature propane dehydrogenation at 823 K, and after cool-down.

View Article and Find Full Text PDF