98%
921
2 minutes
20
Objective: This study seeks to construct a machine learning model that merges clinical characteristics with ultrasound radiomic analysis-encompassing both the intratumoral and peritumoral-to predict the status of axillary lymph nodes in patients with early-stage breast cancer.
Methods: The study employed retrospective methods, collecting clinical information, ultrasound data, and postoperative pathological results from 321 breast cancer patients (including 224 in the training group and 97 in the validation group). Through correlation analysis, univariate analysis, and Lasso regression analysis, independent risk factors related to axillary lymph node metastasis in breast cancer were identified from conventional ultrasound and immunohistochemical indicators, and a clinical feature model was constructed. Additionally, features were extracted from ultrasound images of the intratumoral and its 1-5 mm peritumoral to establish a radiomics feature formula. Furthermore, by combining clinical features and ultrasound radiomics features, six machine learning models (Logistic Regression, Decision Tree, Support Vector Machine, Extreme Gradient Boosting, Random Forest, and K-Nearest Neighbors) were compared for diagnostic efficacy, and constructing a joint prediction model based on the optimal ML algorithm. The use of Shapley Additive Explanations (SHAP) enhanced the visualization and interpretability of the model during the diagnostic process.
Results: Among the 321 breast cancer patients, 121 had axillary lymph node metastasis, and 200 did not. The clinical feature model had an AUC of 0.779 and 0.777 in the training and validation groups, respectively. Radiomics model analysis showed that the model including the Intratumor +3 mm peritumor area had the best diagnostic performance, with AUCs of 0.847 and 0.844 in the training and validation groups, respectively. The joint prediction model based on the XGBoost algorithm reached AUCs of 0.917 and 0.905 in the training and validation groups, respectively. SHAP analysis indicated that the Rad Score had the highest weight in the prediction model, playing a significant role in predicting axillary lymph node metastasis in breast cancer.
Conclusion: The predictive model, which integrates clinical features and radiomic characteristics using the XGBoost algorithm, demonstrates significant diagnostic value for axillary lymph node metastasis in breast cancer. This model can provide significant references for preoperative surgical strategy selection and prognosis evaluation for breast cancer patients, helping to reduce postoperative complications and improve long-term survival rates. Additionally, the utilization of SHAP enhancing the global and local interpretability of the model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jum.16483 | DOI Listing |
Cardiovasc Intervent Radiol
September 2025
The Department of Radiology, Wakayama Medical University, Wakayama, Japan.
Purpose: Recent advancements in medical technologies have made trans-arterial treatment of breast cancer feasible. Consequently, understanding the vascular anatomies of breast cancers and axillary lymph node metastases has become indispensable for sophisticated treatments. The aim of this study was to determine the vascular anatomy of the breast, which is crucial for trans-arterial chemoembolization in patients with breast cancer.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University; Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast Cancer;
The integration of robotic platforms in breast oncology has witnessed substantial expansion, fueled by their inherent advantages in minimally invasive access and enhanced intraoperative maneuverability. Most of the robotic-assisted breast surgery has been performed using multi-arm robots. However, the implementation of single-port robotic (SPr) systems in mammary interventions continues to undergo rigorous clinical evaluation, particularly regarding long-term oncological safety and cost-effectiveness metrics.
View Article and Find Full Text PDFRadiol Med
September 2025
Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, 20141, Milan, Italy.
Metastatic involvement (MB) of the breast from extramammary malignancies is rare, with an incidence of 0.09-1.3% of all breast malignancies.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Radiology, Hainan Cancer Hospital, Hainan, China.
Front Oncol
August 2025
Information Technology Management, The Affiliated Hospital of Qingdao University, Qingdao, China.
Gastric metastasis of breast cancer is rare, and clinical data on its treatment and prognosis are limited at present. Herein, we report a case of gastric metastasis arising from invasive ductal and mucinous carcinoma of the breast and review the literature. A 51-year-old woman was diagnosed with infiltrating and mucinous carcinoma of the right breast accompanied by ipsilateral axillary lymph node and subclavian lymph node metastases.
View Article and Find Full Text PDF