Cell-Specific Impacts of Surface Coating Composition on Extracellular Vesicle Secretion.

ACS Appl Mater Interfaces

Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biomaterial properties have recently been shown to modulate extracellular vesicle (EV) secretion and cargo; however, the effects of substrate composition on EV production remain underexplored. This study investigates the impacts of surface coatings composed of collagen I (COLI), fibronectin (FN), and poly l-lysine (PLL) on EV secretion for applications in therapeutic EV production and to further understanding of how changes in the extracellular matrix microenvironment affect EVs. EV secretion from primary bone marrow-derived mesenchymal stromal cells (BMSCs), primary adipose-derived stem cells (ASCs), HEK293 cells, NIH3T3 cells, and RAW264.7 cells was characterized on the different coatings. Expression of EV biogenesis genes and cellular adhesion genes was also analyzed. COLI coatings significantly decreased EV secretion in RAW264.7 cells, with associated decreases in cell viability and changes in EV biogenesis-related and cell adhesion genes at day 4. FN coatings increased EV secretion in NIH3T3 cells, while PLL coatings increased EV secretion in ASCs. Surface coatings had significant effects on the capacity of EVs derived from RAW264.7 and NIH3T3 cells to impact in vitro macrophage proliferation. Overall, surface coatings had different cell-specific effects on EV secretion and in vitro functional capacity, thus highlighting the potential of substrate coatings to further the development of clinical EV production systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c03213DOI Listing

Publication Analysis

Top Keywords

surface coatings
12
nih3t3 cells
12
impacts surface
8
extracellular vesicle
8
secretion
8
vesicle secretion
8
coatings
8
cells
8
raw2647 cells
8
adhesion genes
8

Similar Publications

Marine biofouling poses significant economic and environmental challenges, highlighting the need for effective antifouling coatings. We report amphiphilic poly(SBMA--EGDEA) copolymer coatings that resist both marine diatom adhesion and sediment adsorption. The coatings were synthesized via surface-initiated ATRP and RAFT polymerization using hydrophilic sulfobetaine methacrylate (SBMA) and hydrophobic ethylene glycol dicyclopentenyl ether acrylate (EGDEA).

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) enable direct communication between the brain and computers. However, their long-term functionality remains limited due to signal degradation caused by acute insertion trauma, chronic foreign body reaction (FBR), and biofouling at the device-tissue interface. To address these challenges, we introduce a multifunctional surface modification strategy called targeting-specific interaction and blocking nonspecific adhesion (TAB) coating for flexible fiber, achieving a synergistic integration of mechanical compliance and biochemical stability.

View Article and Find Full Text PDF

The increasing use of blood-contacting medical devices has brought about significant advancements in patient care, yet it also presents challenges such as thrombus formation and infection risks. Surface coatings play a vital role in mitigating these side effects, enhancing the safety and effectiveness of such devices. In this study, we introduced a novel coating employing poly(aspartic acid) (PASP), which can be easily applied through various modification pathways.

View Article and Find Full Text PDF

Robust Antifogging and Antifouling Coating Tailored with Zwitterionic Nanocellulose for Multi-Functional Applications.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.

Biofouling often occurs simultaneously with fogging, presenting significant challenges to visibility, safety, and operational efficiency. The development of biocompatible coatings that offer both antifouling performance and stability under fogging conditions is highly sought after. A method to form multifunctional coatings is presented, utilizing a zwitterionic nanocellulose composite material that demonstrates both antifogging and antifouling properties, suitable for application on various surfaces.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia with multiple clinical manifestations and complications, such as cardiovascular disease, kidney dysfunction, retinal impairment, and peripheral neuropathy. Continuous and minimally invasive glucose monitoring is essential for effective DM management. Microneedles (MNs)-based sensing platforms offer a promising solution; however, conventional polymeric MNs suffer from limited electrochemical sensitivity due to their insufficient electroactive surface area and inefficient loading of catalytic and enzymatic components.

View Article and Find Full Text PDF