Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.19797DOI Listing

Publication Analysis

Top Keywords

disease resistance
12
resistance tolerance
12
needle cast
12
genetic architecture
8
tolerance douglas-fir
8
resistance
5
architecture disease
4
tolerance
4
douglas-fir trees
4
trees understanding
4

Similar Publications

Background: Invasive mold diseases (IMDs) are a severe complication of immunocompromised subjects and an emerging problem among severely ill, apparently immunocompetent patients. The aim of this study was to describe the epidemiological and clinical features of IMDs in Chile.

Methods: Prospective study of IMD cases in children and adults from 11 reference hospitals in Chile from May 2019 to May 2021.

View Article and Find Full Text PDF

Assessing the prevalence of antimicrobial resistance among pediatric patients at Kamuzu Central Hospital, Malawi.

J Infect Dev Ctries

August 2025

Division of Epidemiology and Biostatistics, Global Health Department, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.

Introduction: Severe bacterial infections cause significant disease burden in developing countries, including Malawi. The situation is compounded by the scarcity of resources, inconsistent availability of antibiotics, and increasing antimicrobial resistance (AMR).

Methodology: This was a descriptive retrospective study where we analyzed blood culture results of pediatric patients admitted to Kamuzu Central Hospital (KCH), Lilongwe, Malawi.

View Article and Find Full Text PDF

Resistance arteries, which include small arteries and arterioles, play essential roles in regulating blood pressure and tissue perfusion. Dysfunction in these arteries can lead to various cardiovascular conditions such as hypertension, atherosclerosis, and heart failure, as well as neurovascular conditions. The examination of human resistance arteries is crucial for understanding cardiovascular disease mechanisms and developing targeted therapeutic strategies.

View Article and Find Full Text PDF

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

Sodium Orthovanadate (SOV) mitigates alcohol & alcohol plus high-fat diet (HFD)-induced hepatotoxicity in rats.

Cell Mol Biol (Noisy-le-grand)

September 2025

Associate Professor, School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh-Punjab 147301, India.

Alcoholic fatty liver disease (AFLD) is a leading cause of chronic liver disease worldwide, contributing to significant morbidity and mortality. Despite its growing prevalence, no FDA-approved pharmacological treatments exist, leaving lifestyle modifications as the primary intervention. AFLD pathogenesis involves a complex interplay of lipid accumulation, oxidative stress, insulin resistance, and inflammation, highlighting the need for innovative therapeutic approaches.

View Article and Find Full Text PDF