Microwave-transparent metallic metamaterials for autonomous driving safety.

Nat Commun

Department of Applied Physics, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Maintaining the surface transparency of protective covers using transparent heaters in extreme weather is imperative for enhancing safety in autonomous driving. However, achieving both high transmittance and low sheet resistance, two key performance indicators for transparent heaters, is inherently challenging. Here, inspired by metamaterial design, we report microwave-transparent, low-sheet-resistance heaters for automotive radars. Ultrathin (approximately one ten-thousandth of the wavelength), electrically connected metamaterials on a millimetre-thick dielectric cover provide near-unity transmission at specific frequencies within the W band (75-110 GHz), despite their metal filling ratio exceeding 70 %. These metamaterials yield the desired phase delay to adjust Fabry-Perot resonance at each target frequency. Fabricated microwave-transparent heaters exhibit exceptionally low sheet resistance (0.41 ohm/sq), thereby heating the dielectric cover above 180 °C at a nominal bias of 3 V. Defrosting tests demonstrate their thermal capability to swiftly remove thin ice layers in sub-zero temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130274PMC
http://dx.doi.org/10.1038/s41467-024-49001-wDOI Listing

Publication Analysis

Top Keywords

autonomous driving
8
transparent heaters
8
low sheet
8
sheet resistance
8
dielectric cover
8
microwave-transparent metallic
4
metallic metamaterials
4
metamaterials autonomous
4
driving safety
4
safety maintaining
4

Similar Publications

Cadmium (Cd) is a heavy metal that exhibits strong carcinogenic properties and promotes breast cancer (BC) progression. Autophagic flux dysfunction is involved in Cd-induced BC progression, but the underlying molecular mechanisms remain unclear. Here, it is observed that impaired autophagic flux and metabolic reprogramming are notable features related to Cd-induced proliferation, migration, and invasion in BC cell lines, including T-47D and MCF-7 cells.

View Article and Find Full Text PDF

Infrared photodetectors are crucial for autonomous driving, providing reliable object detection under challenging lighting conditions. However, conventional silicon-based devices are limited in their responsivity beyond 1100 nm. Here, a scallop-structured silicon photodetector integrated with tin-substituted perovskite quantum dots (PQDs) that effectively extends infrared detection is demonstrated.

View Article and Find Full Text PDF

Background: Mediator complex subunit 10 (MED10) serves as a critical regulator of eukaryotic gene expression by facilitating RNA polymerase II activity. Our investigation aims to characterize MED10's functional contributions and underlying molecular pathways in hepatocellular carcinoma (HCC) development.

Methods: MED10 expression patterns in HCC and their correlation with clinicopathological parameters and patient outcomes were examined using bioinformatics databases and immunohistochemistry.

View Article and Find Full Text PDF

CRISPR homing gene drive is a disruptive biotechnology developed over the past decade with potential applications in public health, agriculture, and conservation biology. This technology relies on an autonomous selfish genetic element able to spread in natural populations through the release of gene drive individuals. However, it has not yet been deployed in the wild.

View Article and Find Full Text PDF

Paraquat Induced Neuro-immunotoxicity: Dysregulated Microglial Antigen Processing and Mitochondrial Activated Mechanisms.

Chem Biol Interact

September 2025

School of Public Health, Ningxia Medical University (Yinchuan City, Ningxia Hui Autonomous Region, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia Hui Autonomous Region, China. Electronic address: hmin81

Paraquat (PQ) is characterized by neurotoxicity. In daily life, PQ exposure mainly occurs through chronic and trace pathways, which induce progressive neuronal damage or neuronal synaptic loss. Previously, mitochondrial dysfunction was a critical underlying mechanism.

View Article and Find Full Text PDF