Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Micro ribonucleic acids (miRNAs) play a pivotal role in governing the human transcriptome in various biological phenomena. Hence, the accumulation of miRNA expression dysregulation frequently assumes a noteworthy role in the initiation and progression of complex diseases. However, accurate identification of dysregulated miRNAs still faces challenges at the current stage. Several bioinformatics tools have recently emerged for forecasting the associations between miRNAs and diseases. Nonetheless, the existing reference tools mainly identify the miRNA-disease associations in a general state and fall short of pinpointing dysregulated miRNAs within a specific disease state. Additionally, no studies adequately consider miRNA-miRNA interactions (MMIs) when analyzing the miRNA-disease associations. Here, we introduced a systematic approach, called IDMIR, which enabled the identification of expression dysregulated miRNAs through an MMI network under the gene expression context, where the network's architecture was designed to implicitly connect miRNAs based on their shared biological functions within a particular disease context. The advantage of IDMIR is that it uses gene expression data for the identification of dysregulated miRNAs by analyzing variations in MMIs. We illustrated the excellent predictive power for dysregulated miRNAs of the IDMIR approach through data analysis on breast cancer and bladder urothelial cancer. IDMIR could surpass several existing miRNA-disease association prediction approaches through comparison. We believe the approach complements the deficiencies in predicting miRNA-disease association and may provide new insights and possibilities for diagnosing and treating diseases. The IDMIR approach is now available as a free R package on CRAN (https://CRAN.R-project.org/package=IDMIR).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129766PMC
http://dx.doi.org/10.1093/bib/bbae258DOI Listing

Publication Analysis

Top Keywords

dysregulated mirnas
24
identification dysregulated
12
gene expression
12
mirnas
9
expression data
8
mirna-disease associations
8
idmir approach
8
mirna-disease association
8
idmir
6
dysregulated
6

Similar Publications

Objective: This study employs integrated network toxicology and molecular docking to investigate the molecular basis underlying 4-nonylphenol (4-NP)-mediated enhancement of breast cancer susceptibility.

Methods: We integrated data from multiple databases, including ChEMBL, STITCH, Swiss Target Prediction, GeneCards, OMIM and TTD. Core compound-disease-associated target genes were identified through Protein-Protein Interaction (PPI) network analysis.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Epigenetic regulation of bladder cancer in the context of aging.

Front Pharmacol

August 2025

Stem Cell Research Center, Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China.

Bladder cancer (BC) is a disease that predominantly affects older adults, with aging playing a critical role in its onset and progression. Age-associated phenomena, including immunosenescence and chronic inflammation, form a pro-tumor milieu, while genomic instability and epigenetic drift further increase cancer risk. The review highlights the dual role of DNA methylation in BC: global hypomethylation can activate transposable elements and oncogenes, whereas focal hypermethylation silences tumor-suppressor genes like CDKN2A, especially detrimental in older tissues that rely on these genes for senescence control.

View Article and Find Full Text PDF

Introduction: Ischemic heart disease (IHD) remains a major global health burden, highlighting the urgent need for early, non-invasive diagnostic biomarkers. MicroRNAs (miRNAs), small non-coding RNA molecules that regulate gene expression, have emerged as promising candidates due to their stability in circulation and involvement in cardiovascular processes. This systematic review aimed to evaluate the potential of specific miRNAs as early diagnostic biomarkers in IHD.

View Article and Find Full Text PDF

Transcription factors are significant regulators of gene expression in most biological processes related to diabetes, including beta cell (β-cell) development, insulin secretion and glucose metabolism. Dysregulation of transcription factor expression or abundance has been closely associated with the pathogenesis of type 1 and type 2 diabetes, including pancreatic and duodenal homeobox 1 (), neurogenic differentiation 1 (), and forkhead box protein O1 (). Gene expression is regulated at the transcriptional level by transcription factor binding, epigenetically by DNA methylation and chromatin remodelling, and post-transcriptional mechanisms, including alternative splicing and microRNA (miRNA).

View Article and Find Full Text PDF