A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fabrication of nitrogen-doped carbon dots biomass composite hydrogel for adsorption of Cu (II) in wastewater or soil and DFT simulation for adsorption mechanism. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the increase of Cu (II) content, its bioaccumulation becomes a potential pollution to the environment. It is necessary to design an economical and efficient material to remove Cu (II) without causing other environmental hazards. A novel material of alginate composite bead (ALG@NCDs) was synthesized by embedding N-doped carbon dots into pure alginate bead for the adsorption of Cu (II) from wastewater and contaminated soil. The initial concentration, the amount of adsorbent, temperature, adsorption time, and pH value were optimized for the adsorption of Cu (II). According to the Langmuir isothermal adsorption model, the maximum adsorption amount of the material to Cu (II) was 152.44 mg/g. The results of selective adsorption showed that ALG@NCDs had higher affinity to Cu (II) than to Pb (II), Co (II), Ni (II), and Zn (II). After five adsorption-desorption experiment, adsorption capacity of the ALG@NCDs was kept 89% of the initial adsorption capacity. Its Cu (II) adsorption mechanism was studied by density functional theory calculations. In addition, the material could effectively adsorb Cu (II) and release the phytonutrient Ca (II) simultaneously when applied to actual wastewater and soil. The fabricated ALG@NCDs would be a promising material for the adsorption of Cu (II) from wastewater or soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142432DOI Listing

Publication Analysis

Top Keywords

adsorption
12
adsorption wastewater
12
wastewater soil
12
carbon dots
8
adsorption mechanism
8
adsorption capacity
8
material
5
fabrication nitrogen-doped
4
nitrogen-doped carbon
4
dots biomass
4

Similar Publications