98%
921
2 minutes
20
The RAS-MAPK-pathway is aberrantly regulated in cancer and developmental diseases called RASopathies. While typically the impact of Ras on the proliferation of various cancer cell lines is assessed, it is poorly established how Ras affects cellular differentiation. Here we implement the C2C12 myoblast cell line to systematically study the effect of Ras mutants and Ras-pathway drugs on differentiation. We first provide evidence that a minor pool of Pax7+ progenitors replenishes a major pool of transit amplifying cells that are ready to differentiate. Our data indicate that Ras isoforms have distinct roles in the differentiating culture, where K-Ras depletion increases and H-Ras depletion decreases terminal differentiation. This assay could therefore provide significant new insights into Ras biology and Ras-driven diseases. In line with this, we found that all oncogenic Ras mutants block terminal differentiation of transit amplifying cells. By contrast, RASopathy associated K-Ras variants were less able to block differentiation. Profiling of eight targeted Ras-pathway drugs on seven oncogenic Ras mutants revealed their allele-specific activities and distinct abilities to restore normal differentiation as compared to triggering cell death. In particular, the MEK-inhibitor trametinib could broadly restore differentiation, while the mTOR-inhibitor rapamycin broadly suppressed differentiation. We expect that this quantitative assessment of the impact of Ras-pathway mutants and drugs on cellular differentiation has great potential to complement cancer cell proliferation data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejcb.2024.151425 | DOI Listing |
PLoS Genet
September 2025
Department of Biology/Chemistry, Division of Genetics, University of Osnabrück, Barbarastrasse, Osnabrück, Germany.
The small GTPase Rho5 has been shown to be involved in regulating the Baker's yeast response to stress on the cell wall, high medium osmolarity, and reactive oxygen species. These stress conditions trigger a rapid translocation of Rho5 and its dimeric GDP/GTP exchange factor (GEF) to the mitochondrial surface, which was also observed upon glucose starvation. We here show that rho5 deletions affect carbohydrate metabolism both at the transcriptomic and the proteomic level, in addition to cell wall and mitochondrial composition.
View Article and Find Full Text PDFJCI Insight
September 2025
Department of Pharmacology, University of Michigan, Ann Arbor, United States of America.
Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA. Electronic address:
Cell states evolve through the combined activity of signaling pathways and gene networks. While transcription factors can direct cell fate, these factors rely on a receptive cell state. How signaling levels contribute to the emergence of receptive cell states remains poorly defined.
View Article and Find Full Text PDFJ Clin Oncol
September 2025
Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy.
Purpose: Human epidermal growth factor receptor 2 (HER2) amplification/overexpression (HER2-pos) is detected in 5% of wild-type metastatic colorectal cancers (mCRCs). Its prognostic/predictive role in terms of benefit from anti-EGFR/bevacizumab (bev) is debated. Similarly, the role of activating mutations (mut) is unclear.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China.
Ras is a node protein in the classic tumor signaling pathway known as RAS-RAF-MEK. Mutations in Ras are reported to occur in approximately 19% of human cancers. Among them, the G12D mutation is one of the most prevalent mutations found in Ras.
View Article and Find Full Text PDF