The RAS-MAPK-pathway is aberrantly regulated in cancer and developmental diseases called RASopathies. While typically the impact of Ras on the proliferation of various cancer cell lines is assessed, it is poorly established how Ras affects cellular differentiation. Here we implement the C2C12 myoblast cell line to systematically study the effect of Ras mutants and Ras-pathway drugs on differentiation.
View Article and Find Full Text PDFThe C2C12 cell line represents a simple in vitro model for cell differentiation. Here, we present a flow-cytometry-based pipeline to quantitate C2C12 cell differentiation based on myosin heavy-chain marker expression. We describe steps for cell seeding, transfection, drug treatment, differentiation, and labeling.
View Article and Find Full Text PDFDisruption of the native membrane organization of Ras by the farnesyltransferase inhibitor tipifarnib in the late 1990s constituted the first indirect approach to drug target Ras. Since then, our understanding of how dynamically Ras shuttles between subcellular locations has changed significantly. Ras proteins have to arrive at the plasma membrane for efficient MAPK-signal propagation.
View Article and Find Full Text PDFIn vivo cell cycle progression analysis is routinely performed in studies on genes regulating mitosis and DNA replication. 5-Ethynyl-2'-deoxyuridine (EdU) has been utilized to investigate replicative/S-phase progression, whereas antibodies against phospho-histone H3 have been utilized to mark mitotic nuclei and cells. A combination of both labels would enable the classification of G0/G1 (Gap phase), S (replicative), and M (mitotic) phases and serve as an important tool to evaluate the effects of mitotic gene knockdowns or null mutants on cell cycle progression.
View Article and Find Full Text PDFCancer stem cells (CSC) may be the most relevant and elusive cancer cell population, as they have the exquisite ability to seed new tumors. It is plausible, that highly mutated cancer genes, such as KRAS, are functionally associated with processes contributing to the emergence of stemness traits. In this review, we will summarize the evidence for a stemness driving activity of oncogenic Ras.
View Article and Find Full Text PDFPLoS Genet
November 2020
Mitotic divisions depend on the timely assembly and proper orientation of the mitotic spindle. Malfunctioning of these processes can considerably delay mitosis, thereby compromising tissue growth and homeostasis, and leading to chromosomal instability. Loss of functional Mms19 drastically affects the growth and development of mitotic tissues in Drosophila larvae and we now demonstrate that Mms19 is an important factor that promotes spindle and astral microtubule (MT) growth, and MT stability and bundling.
View Article and Find Full Text PDFMitochondrial morphology regulatory proteins interact with signaling pathways involved in differentiation. In Drosophila oogenesis, EGFR signaling regulates mitochondrial fragmentation in posterior follicle cells (PFCs). EGFR driven oocyte patterning and Notch signaling mediated differentiation are abrogated when PFCs are deficient for the mitochondrial fission protein Drp1.
View Article and Find Full Text PDFMedicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2015
Effective targeting of mitochondria has emerged as an alternative strategy in cancer chemotherapy. However, considering mitochondria's crucial role in cellular energetics, metabolism and signaling, targeting mitochondria with small molecules would lead to severe side effects in cancer patients. Moreover, mitochondrial functions are highly dependent on other cellular organelles like nucleus.
View Article and Find Full Text PDF