Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cathepsin B (CtsB) is a ubiquitously expressed cysteine protease that plays important roles in health and disease. Urinary extracellular vesicles (uEVs) are released from cells associated with urinary organs. The antibiotic streptozotocin (STZ) is known to induce pancreatic islet beta cell destruction, diabetic nephropathy, and hypertension. We hypothesized that streptozotocin-induced diabetic kidney disease and hypertension result in the release of bioactive lipids from kidney cells that induce oxidative stress and renal cell death. Lipidomics was performed on uEVs isolated from CtsB knockout mice treated with or without STZ, and their kidneys were used to investigate changes in proteins associated with cell death. Lysophosphatidylethanolamine (LPE) (18:1), lysophosphatidylserine (LPS) (22:6), and lysophosphatidylglycerol (LPG) (22:5) were among the bioactive lipids enriched in uEVs from CtsB knockout mice treated with STZ compared to untreated CtsB mice ( 3 uEV preparations per group). Anti-oxidant programming was activated in the kidneys of the CtsB knockout mice treated with STZ, as indicated by increased expression of glutathione peroxidase 4 (GPX4) and the cystine/glutamate antiporter SLC7A11 (XCT) ( = 4 mice per group), which was supported by a higher reactivity to 4-hydroxy-2-nonenal (4-HNE), a marker for oxidative stress ( 3 mice per group). Apoptosis but not ferroptosis was the ongoing form of cell death in these kidneys as cleaved caspase-3 levels were significantly elevated in the STZ-treated CtsB knockout mice ( = 4 mice per group). There were no appreciable differences in the pro-ferroptosis enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) or the inflammatory marker CD93 in the kidneys ( 3 mice per group), which further supports apoptosis as the prevalent mechanism of pathology. These data suggest that STZ treatment leads to oxidative stress, inducing apoptotic injury in the kidneys during the development of diabetic kidney disease and hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117475PMC
http://dx.doi.org/10.3390/biomedicines12051038DOI Listing

Publication Analysis

Top Keywords

knockout mice
20
ctsb knockout
16
mice group
16
bioactive lipids
12
oxidative stress
12
cell death
12
mice treated
12
treated stz
12
mice
10
urinary extracellular
8

Similar Publications

Introduction: Knockout of the Fmo5 gene in mice led to a lean, slow-ageing phenotype characterised by the presence of 2,3-butanediol isomers in their urine and plasma. Oral treatment of wildtype mice with 2,3-butanediol led to a low cholesterol, low epididymal fat phenotype.

Objectives: Determine if significant, heterozygous coding variations in human FMO5 would give rise to similar clinical and metabolic phenotypes in humans, as in C57BL/6J mice with knockout of the Fmo5 gene and in particular, increased excretion of 2,3-butanediol.

View Article and Find Full Text PDF

Hic-5 deficiency attenuates MAFLD by inhibiting neutrophils migration via the CXCL1-CXCR2 axis.

J Gastroenterol

September 2025

Department of General Surgery (Hepatopancreatobiliary Surgery), Department of Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.

Background And Aims: Inflammatory cell infiltration in the liver is a hallmark of metabolic dysfunction-associated fatty liver disease (MAFLD). However, the pathological events that trigger the infiltration of inflammatory cells to mediate MAFLD pathogenesis remains poorly understood. This study aims to investigate the function and mechanism of Hic-5 on hepatic inflammation of MAFLD.

View Article and Find Full Text PDF

Aims/hypothesis: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) have been shown to improve glycaemic management in both mice and humans. Yet the identity of the downstream signalling events mediated by these peptides remain to be elucidated. Here, we aimed to assess the mechanisms by which a validated peptide triagonist for GLP-1/GIP/GCG receptors (IUB447) stimulates insulin secretion in murine pancreatic islets.

View Article and Find Full Text PDF

ATG16L1 controls mammalian vacuolar proton ATPase.

J Cell Biol

October 2025

Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.

The mechanisms governing mammalian proton pump V-ATPase function are of fundamental and medical interest. The assembly and disassembly of cytoplasmic V1 domain with the membrane-embedded V0 domain of V-ATPase is a key aspect of V-ATPase localization and function. Here, we show that the mammalian protein ATG16L1, primarily appreciated for its role in canonical autophagy and in noncanonical membrane atg8ylation processes, controls V-ATPase.

View Article and Find Full Text PDF

DDX6 interacts with DDX3X to repress translation in microRNA-mediated silencing.

Nucleic Acids Res

September 2025

Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.

DDX6 is known to repress messenger RNA (mRNA) translation and promote mRNA decay in microRNA-mediated silencing. In embryonic stem cells (ESCs), DDX6 primarily functions at the translation level, independent of mRNA destabilization; however, the precise molecular mechanism of how DDX6 represses translation remains unclear. Here, we identify DDX3X as a key downstream target of DDX6-mediated translational repression in ESCs.

View Article and Find Full Text PDF