Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rare earth elements (REEs) are a new type of material resource which have attracted significant attention in recent years. REEs have emerged as essential metals in modern-day technology due to their unique functions. The long-term, large-scale mining and utilization of rare earths has caused serious environmental pollution and constitutes a global health issue, which has raised concerns regarding the safety of human health. However, the toxicity profile of suspended particulate matter in REEs in the environment, which interacts with the human body, remains largely unknown. Studies have shown that REEs can enter the human body through a variety of pathways, leading to a variety of organ and system dysfunctions through changes in genetics, epigenetics, and signaling pathways. Through an extensive literature search and critical analysis, we provide a comprehensive overview of the available evidence, identify knowledge gaps, and make recommendations for future research directions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125915PMC
http://dx.doi.org/10.3390/toxics12050317DOI Listing

Publication Analysis

Top Keywords

rare earth
8
earth elements
8
human health
8
human body
8
toxic effects
4
effects rare
4
human
4
elements human
4
health review
4
review rare
4

Similar Publications

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

With the rapid development of the nuclear medicine business worldwide, the removal of iodine-131 from specific contaminated environments to protect public health has important application prospects. In this study, the surface decontamination mechanism of Ce(IV)/HNO3 as a decontaminant for iodine-131-contaminated nonmetallic materials was investigated by using an orthogonal experimental method and scanning electron microscopy (SEM). During the preparation experiments with the contaminated materials, both quartz glass and ceramics reached peak activity concentration levels at 4 h of adsorption (contamination) by using immersion; the decontamination factor (DF) was selected as the test index for the decontamination experiments.

View Article and Find Full Text PDF

Critical roles of rare species in the anaerobic ammonium oxidizing bacterial community in coastal sediments.

Mar Life Sci Technol

August 2025

State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.

Unlabelled: Anaerobic ammonium oxidation (anammox) plays a critical role in nitrogen loss in estuarine and marine environments. However, the mechanisms underlying the formation and maintenance of the anammox bacterial community remain unclear. This study analyzed the anammox bacterial diversity, community structure, and interspecific relationships in three estuaries along the Chinese coastline -the Changjiang Estuary (CJE), the Oujiang Estuary (OJE), and the Jiulong River Estuary (JLE) - as well as the South China Sea (SCS) to elucidate their community assembly mechanisms.

View Article and Find Full Text PDF

In this work, carbon nanodots (CNDs) were synthesized via a pyrolysis carbonization method using petals. The synthesized CNDs exhibit optical absorption in the UV region, with a tail extending out into the visible range. When these CNDs interact with Ho ions through charge transfer processes, they form an RE-CNDs hybrid (Rare Earth-CNDs hybrid), resulting in fluorescence quenching in an aqueous solution.

View Article and Find Full Text PDF

A series of six quinary rare-earth sulfides CeEuNaSiS, CeEuKSiS, CeEuRbSiS, CeEuCsSiS, CeEuAgSiS, and CeEuCuSiS were obtained in an alkali iodide flux using the boron-chalcogen mixture (BCM) method. Single crystal X-ray diffraction was used to determine the structures of the high quality single crystals that were grown; their elemental compositions were confirmed by energy-dispersive spectroscopy (EDS). The compounds crystallize in the hexagonal crystal system in the noncentrosymmetric space group 6.

View Article and Find Full Text PDF