98%
921
2 minutes
20
Radiomics features can reveal hidden patterns in a tumor but usually lack an underlying biologic rationale. In this work, we aimed to investigate whether there is a correlation between radiomics features extracted from [F]FDG PET images and histologic expression patterns of a glycolytic marker, monocarboxylate transporter-4 (MCT4), in pancreatic cancer. A cohort of pancreatic ductal adenocarcinoma patients ( = 29) for whom both tumor cross sections and [F]FDG PET/CT scans were available was used to develop an [F]FDG PET radiomics signature. By using immunohistochemistry for MCT4, we computed density maps of MCT4 expression and extracted pathomics features. Cluster analysis identified 2 subgroups with distinct MCT4 expression patterns. From corresponding [F]FDG PET scans, radiomics features that associate with the predefined MCT4 subgroups were identified. Complex heat map visualization showed that the MCT4-high/heterogeneous subgroup was correlating with a higher MCT4 expression level and local variation. This pattern linked to a specific [F]FDG PET signature, characterized by a higher SUV and SUV and second-order radiomics features, correlating with local variation. This MCT4-based [F]FDG PET signature of 7 radiomics features demonstrated prognostic value in an independent cohort of pancreatic cancer patients ( = 71) and identified patients with worse survival. Our cross-modal pipeline allows the development of PET scan signatures based on immunohistochemical analysis of markers of a particular biologic feature, here demonstrated on pancreatic cancer using intratumoral MCT4 expression levels to select [F]FDG PET radiomics features. This study demonstrated the potential of radiomics scores to noninvasively capture intratumoral marker heterogeneity and identify a subset of pancreatic ductal adenocarcinoma patients with a poor prognosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2967/jnumed.123.266262 | DOI Listing |
Eur J Nucl Med Mol Imaging
September 2025
Department of PET-CT/MRI, NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
Objective: CXCR4 and integrin αβ play important roles in tumor biology and are highly expressed in multiple types of tumors. This study aimed to synthesize, preclinically evaluate, and clinically validate a novel dual-targeted PET imaging probe Ga-pentixafor-c(RGDfK) for its potential in imaging tumors.
Methods: The effects of Ga-pentixafor-c(RGDfK) on cell viability, targeting specificity, and affinity were assessed in the U87MG cells.
Mol Pharm
September 2025
Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
Myocardial fibrosis, a key pathological feature of hypertensive heart disease (HHD), remains diagnostically challenging due to limited clinical tools. In this study, a FAPI-targeted uptake mechanism previously reported by our group, originally developed for tumor imaging, is extended to the detection of myocardial fibrosis in HHD using [F]F-NOTA-FAPI-MB. The diagnostic performance of this tracer is compared with those of [F]F-FDG, [F]F-FAPI-42, and [F]F-NOTA-FAP2286, and its potential for fluorescence imaging is also evaluated.
View Article and Find Full Text PDFMol Pharm
September 2025
Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation. This study aimed to use the sphingosine 1-phosphate receptor 1 (S1PR1) targeted tracer [F]TZ4877 with PET/CT to assess synovial inflammation in a collagen-induced arthritis (CIA) mouse model. [F]TZ4877 and [F]FDG PET/CT imaging were performed on RA ( = 6) and control ( = 6) mice.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
Preclinical PET studies offer the opportunity to elucidate molecular mechanisms underlying early neurodevelopment with minimal invasiveness. We demonstrated the feasibility of fetal brain PET in four pregnant rats ( = 42 fetuses). [F]FDG uptake in rat fetuses was readily visualized by PET imaging.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2025
Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.
View Article and Find Full Text PDF