98%
921
2 minutes
20
While sodium hypochlorite (NaClO) has long been used to disinfect drinking water, concerns have risen over its use due to causing potentially hazardous byproducts. Catalytic ozonation with metal-free catalysts has attracted increasing attention to eliminate the risk of secondary pollution of byproducts in water treatment. Here, we compared the disinfection efficiency and microbial community of catalytic ozone with a type of metal-free catalyst fluorinated ceramic honeycomb (FCH) and NaClO disinfectants under laboratory- and pilot-scale conditions. Under laboratory conditions, the disinfection rate of catalytic ozonation was 3∼6-fold that of ozone when the concentration of Escherichia coli was 1 × 10 CFU/ml, and all E. coli were killed within 15 s. However, 0.65 mg/L NaClO retained E. coli after 30 min using the traditional culturable approach. The microorganism inactivation results of raw reservoir water disinfected by catalytic ozonation and ozonation within 15 s were incomparable based on the cultural method. In pilot-scale testing, catalytic ozonation inactivated all environmental bacteria within 4 min, while 0.65 mg/L NaClO could not achieve this success. Both catalytic ozonation and NaClO-disinfected methods significantly reduced the number of microorganisms but did not change the relative abundances of different species, i.e., bacteria, viruses, eukaryotes, and archaea, based on metagenomic analyses. The abundance of virulence factors (VFs) and antimicrobial resistance genes (ARGs) was detected few in catalytic ozonation, as determined by metagenomic sequencing. Some VFs or ARGs, such as virulence gene 'FAS-II' which was hosted by Mycobacterium_tuberculosis, were detected solely by the NaClO-disinfected method. The enriched genes and pathways of cataO-disinfected methods exhibited an opposite trend, especially in human disease, compared with NaClO disinfection. These results indicated that the disinfection effect of catalytic ozone is superior to NaClO, this finding contributed to the large-scale application of catalytic ozonation with FCH in practical water treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.124184 | DOI Listing |
Environ Res
August 2025
School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, PR China.
MnOx-based materials have attracted significant attention for ozone decomposition due to their excellent catalytic activity. However, improving their stability and water resistance under humid conditions remains a major challenge. In this work, a K-doped ε-MnO catalyst was synthesized in situ using ozone as an oxidant.
View Article and Find Full Text PDFNat Commun
August 2025
School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China.
Heterogeneous catalytic ozonation shows promise in destroying organic pollutants in water, yet developing catalysts with both high activity and stability remains challenging. In this study, we propose a catalyst design strategy involving the anchoring of electron-sharing sites near single-atom sites to construct bidirectional electron transfer interaction tunnels. The developed catalyst (MnN-Fe@FeN) features Fe@FeN atomic clusters as electron-sharing sites, coordinated Mn single-atom centers through shared nitrogen bridges, successfully establishing a synergistic system.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Faculty of Engineering, Department of Chemical and Food Engineering, "Vasile Alecsandri" University of Bacău, 157 Calea Marasesti Street, 600115 Bacău, Romania.
This study explores the adsorption and catalytic degradation of 2,4,6-trinitrotoluene (TNT) from aqueous solutions, using montmorillonite-based catalysts. Commercially, montmorillonite K10 was modified through aluminum pillaring (K10-Al-PILC), followed by vanadium intercalation (K10-Al-PILC-V) and ozone activation. A novel aspect of this work is the use of naturally contaminated water as the TNT source.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. Electronic address:
Typically, photocatalytic HO synthesis faces efficiency limitations due to sacrificial agent dependence and sluggish oxygen activation. Herein, we present, for the first time, an ozone-coupled bimetallic MIL-100(MnCe) photocatalytic approach to HO synthesis. This novel strategy yields an impressive 1602 μmol·g·h HO in pure water without sacrificial agents.
View Article and Find Full Text PDFRSC Adv
August 2025
Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade (HUIT) 140 Le Trong Tan Street, Tay Thanh Ward Ho Chi Minh City Vietnam.
Landfill leachate is a major environmental concern because of its high content of persistent organic compounds (POCs), which require advanced treatment techniques. This study introduces a novel hybrid ozonation-TiO-modified fly ash composite (FA@TiO) process enhanced by a peroxymonosulfate (PMS) for POC degradation in landfill leachate. The FA@TiO composite, synthesized the sol-gel method with optimal 20% TiO loading, leverages fly ash's cost-effectiveness and TiO's catalytic prowess.
View Article and Find Full Text PDF