Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Narrow bandwidths are a general bottleneck for applications relying on passive, linear, subwavelength resonators. In the past decades, several efforts have been devoted to overcoming this challenge, broadening the bandwidth of small resonators by the means of analog non-Foster matching networks for radiators, antennas and metamaterials. However, most non-Foster approaches present challenges in terms of tunability, stability and power limitations. Here, by tuning a subwavelength acoustic transducer with digital non-Foster-inspired electronics, we demonstrate five-fold bandwidth enhancement compared to conventional analog non-Foster matching. Long-distance transmission over airborne acoustic channels, with approximately three orders of magnitude increase in power level, validates the performance of the proposed approach. We also demonstrate convenient reconfigurability of our non-Foster-inspired electronics. This implementation provides a viable solution to enhance the bandwidth of sub-wavelength resonance-based systems, extendable to the electromagnetic domain, and enables the practical implementation of airborne and underwater acoustic radiators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109259PMC
http://dx.doi.org/10.1038/s41467-024-48861-6DOI Listing

Publication Analysis

Top Keywords

non-foster-inspired electronics
12
digital non-foster-inspired
8
analog non-foster
8
non-foster matching
8
electronics broadband
4
broadband impedance
4
impedance matching
4
matching narrow
4
narrow bandwidths
4
bandwidths general
4

Similar Publications

Digital non-Foster-inspired electronics for broadband impedance matching.

Nat Commun

May 2024

Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.

Narrow bandwidths are a general bottleneck for applications relying on passive, linear, subwavelength resonators. In the past decades, several efforts have been devoted to overcoming this challenge, broadening the bandwidth of small resonators by the means of analog non-Foster matching networks for radiators, antennas and metamaterials. However, most non-Foster approaches present challenges in terms of tunability, stability and power limitations.

View Article and Find Full Text PDF