Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spins of electrons in silicon MOS quantum dots combine exquisite quantum properties and scalable fabrication. In the age of quantum technology, however, the metrics that crowned Si/SiO as the microelectronics standard need to be reassessed with respect to their impact upon qubit performance. We chart spin qubit variability due to the unavoidable atomic-scale roughness of the Si/SiO interface, compiling experiments across 12 devices, and develop theoretical tools to analyse these results. Atomistic tight binding and path integral Monte Carlo methods are adapted to describe fluctuations in devices with millions of atoms by directly analysing their wavefunctions and electron paths instead of their energy spectra. We correlate the effect of roughness with the variability in qubit position, deformation, valley splitting, valley phase, spin-orbit coupling and exchange coupling. These variabilities are found to be bounded, and they lie within the tolerances for scalable architectures for quantum computing as long as robust control methods are incorporated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106088PMC
http://dx.doi.org/10.1038/s41467-024-48557-xDOI Listing

Publication Analysis

Top Keywords

spin qubit
8
qubit variability
8
bounds electron
4
electron spin
4
qubit
4
variability scalable
4
scalable cmos
4
cmos architectures
4
architectures spins
4
spins electrons
4

Similar Publications

Quantum simulations of many-body systems are among the most promising applications of quantum computers. In particular, models based on strongly correlated fermions are central to our understanding of quantum chemistry and materials problems, and can lead to exotic, topological phases of matter. However, owing to the non-local nature of fermions, such models are challenging to simulate with qubit devices.

View Article and Find Full Text PDF

Proposed Five-Electron Charge Quadrupole Qubit.

Phys Rev Lett

August 2025

University of Maryland Baltimore County, Department of Physics, Baltimore, Maryland 21250, USA.

A charge qubit couples to environmental electric field fluctuations through its dipole moment, resulting in fast decoherence. We propose the p-orbital (pO) qubit, formed by the single-electron, p-like valence states of a five-electron Si quantum dot, which couples to charge noise through the quadrupole moment. We demonstrate that the pO qubit offers distinct advantages in quality factor, gate speed, readout, and size.

View Article and Find Full Text PDF

Exact Nonequilibrium Steady State of XXZ Circuits Boundary Driven with Arbitrary Resets or Fields.

Phys Rev Lett

August 2025

University of Ljubljana, Department of Physics, Faculty of Mathematics and Physics, Jadranska 19, SI-1000 Ljubljana, Slovenia.

We propose a spatially inhomogeneous matrix product Ansatz for an exact many-body density operator of a boundary-driven XXZ quantum circuit. The Ansatz has formally infinite bond dimension and is fundamentally different from previous constructions. The circuit is driven by a pair of reset quantum channels applied on the boundary qubits, which polarize the qubits to arbitrary pure target states.

View Article and Find Full Text PDF

Spin Qubit Properties of the Boron-Vacancy/Carbon Defect in the Two-Dimensional Hexagonal Boron Nitride.

J Phys Condens Matter

September 2025

Department of Physics, Tuskegee University, 1200 West Montgomery Road, 106 Chappie James, Tuskegee, Alabama, 36088-1920, UNITED STATES.

Spin qubit defects in two-dimensional materials have a number of advantages over those in three-dimensional hosts including simpler technologies for the defect creation and control, as well as qubit accessibility. In this work, we select the VBCB defect in the hexagonal boron nitride (hBN) as a possible optically controllable spin qubit and explain its triplet ground state and neutrality. In this defect a boron vacancy is combined with a carbon dopant substituting the closest boron atom to the vacancy.

View Article and Find Full Text PDF

Precise control of spin states and spin-spin interactions in atomic-scale magnetic structures is crucial for spin-based quantum technologies. A promising architecture is molecular spin systems, which offer chemical tunability and scalability for larger structures. An essential component, in addition to the qubits themselves, is switchable qubit-qubit interactions that can be individually addressed.

View Article and Find Full Text PDF