Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To distinguish DNA methylation (DNAm) from cell proportion changes in whole placental tissue research, we developed a robust cell type-specific DNAm reference to estimate cell composition. We collated newly collected and existing cell type DNAm profiles quantified via Illumina EPIC or 450k microarrays. To estimate cell composition, we deconvoluted whole placental samples (n=36) with robust partial correlation based on the top 50 hyper- and hypomethylated sites per cell type. To test deconvolution performance, we evaluated RMSE in predicting principal component one of DNAm variation in 204 external placental samples. We analyzed DNAm profiles (n=368,435 sites) from 12 cell types: cytotrophoblasts (n=18), endothelial cells (n=19), Hofbauer cells (n=26), stromal cells (n=21), syncytiotrophoblasts (n=4), six lymphocyte types (n=36), and nucleated red blood cells (n=11). Median cell composition was consistent with placental biology: 60.4% syncytiotrophoblast, 17.1% stromal, 8.8% endothelial, 4.5% cytotrophoblast, 3.9% Hofbauer, 1.7% nucleated red blood cells, and 1.2% neutrophils. Our expanded reference outperformed an existing reference in predicting DNAm variation (15.4% variance explained, IQR=21.61) with cell composition estimates (RMSE:10.51 vs. 11.43, p-value<0.001). This cell type reference can robustly estimate cell composition from whole placental DNAm data to detect important cell types, reveal biological mechanisms, and improve casual inference.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100803PMC
http://dx.doi.org/10.1101/2024.05.06.588886DOI Listing

Publication Analysis

Top Keywords

cell composition
20
cell
11
dna methylation
8
estimate cell
8
cell type
8
dnam profiles
8
placental samples
8
sites cell
8
dnam variation
8
nucleated red
8

Similar Publications

Immunotherapies, including cell therapies, are effective anti-cancer agents. However, cellular product persistence can be limiting with short functional duration of activity contributing to disease relapse. A variety of manufacturing protocols are used to generate therapeutic engineered T-cells; these differ in techniques used for T-cell isolation, activation, genetic modification, and other methodology.

View Article and Find Full Text PDF

Oral cancer is a major global health burden, ranking sixth in prevalence, with oral squamous cell carcinoma (OSCC) being the most common type. Importantly, OSCC is often diagnosed at late stages, underscoring the need for innovative methods for early detection. The oral microbiome, an active microbial community within the oral cavity, holds promise as a biomarker for the prediction and progression of cancer.

View Article and Find Full Text PDF

Biofilms-microbial communities encased in a self-produced extracellular matrix-pose a significant challenge in clinical settings due to their association with chronic infections and antibiotic resistance. Their formation in the human body is governed by a complex interplay of biological and environmental factors, including the biochemical composition of bodily fluids, fluid dynamics, and cell-cell and cell-surface interactions. Improving therapeutic strategies requires a deeper understanding of how host-specific conditions shape biofilm development.

View Article and Find Full Text PDF

Long-Lived Charge-Transfer State and Interfacial Lock in Double-Cable Conjugated Polymers Enable Efficient and Stable Organic Solar Cells.

Angew Chem Int Ed Engl

September 2025

Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.

The donor/acceptor (D/A) interfaces in bulk heterojunction (BHJ) organic solar cells (OSCs) critically govern exciton dissociation and molecular diffusion, determining both efficiency and stability. Herein, we design a double-cable conjugated polymer, SC-1F, to insert into a physically-blended D/A system to optimize the interface. We have found that SC-1F spontaneously segregates to the interface through favorable miscibility and heterogeneous nucleation with the acceptor.

View Article and Find Full Text PDF

High Light Utilization and Color Rendering in Vacuum-Deposited Semitransparent Perovskite Solar Cells.

Adv Mater

September 2025

Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Spain.

Formamidinium lead iodide perovskite compositions have a low open circuit voltage deficit and thus a higher power conversion efficiency (PCE) potential. However, their low bandgap makes it difficult to achieve a semitransparent perovskite solar cell (ST-PSC) with a high average visible transmittance (AVT) and thus, a high light utilization efficiency (LUE). Attaining a high AVT in such low bandgap perovskite‑based semitransparent solar cells requires the perovskite layer to be very thin (thickness < ≈100 nm) and the rear electrode to be made of a transparent conductive oxide.

View Article and Find Full Text PDF