98%
921
2 minutes
20
Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce , a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and two implicit neural shape models. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers (root mean squared error ≤ 0.05 vs. ≤ 0.07, 0.10, and 0.14). Our models are also the first to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations (e.g., osteophyte size and localization 63% accuracy vs. 49-61%). The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks are freely accessible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100941 | PMC |
http://dx.doi.org/10.1101/2024.05.06.24306965 | DOI Listing |
Neural Netw
September 2025
School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.
3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.
View Article and Find Full Text PDFThe human mind constructs and updates models of events during comprehension. Event models are multidimensional, multi-timescale, and structured. They enable prediction, shape memory formation, and facilitate action control.
View Article and Find Full Text PDFOsteoarthr Cartil Open
December 2025
Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China.
Objective: We developed and validated an artificial intelligence pipeline that leverages diffusion models to enhance prognostic assessment of knee osteoarthritis (OA) by analyzing longitudinal changes in patella shape on lateral knee radiographs.
Method: In this retrospective study of 2,913 participants from the Multicenter Osteoarthritis Study, left-knee weight-bearing lateral radiographs obtained at baseline and 60 months were analyzed. Our pipeline commences with an automatic segmentation for patella shapes, followed by a diffusion model to predict patella shape trajectories over 60 months.
Food Sci Biotechnol
October 2025
Department of Life Sciences, Somaiya Vidyavihar University, Vidyavihar, Mumbai, India.
Challenges such as a downward trend in cultivation and post-harvest losses lead to increased gap in cocoa bean supply and demand. This review deals with the recent AI models used in farming, processing, and supply chain of cocoa beans. Farming models viz.
View Article and Find Full Text PDFFront Behav Neurosci
August 2025
Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Sound influences motor functions and sound perception is conversely modulated by locomotion. Accumulating evidence supports an interconnection between the auditory system and the basal ganglia (BG), which has functional implications on the interaction between the two systems. Substantial evidence now supports auditory cortex and auditory thalamus inputs to the tri-laminar region of the tail of the striatum (tTS) in rodents.
View Article and Find Full Text PDF