98%
921
2 minutes
20
Gold nanorods (AuNRs) have been considered highly compelling materials for early cancer diagnosis and have aroused a burgeoning fascination among the biomedical sectors. By leveraging the versatile tunable optical properties of AuNRs, herein, we have developed a novel tumor-targeted dual-modal nanoprobe (FFA) that exhibits excellent bioluminescence and photoacoustic imaging performance for early tumor diagnosis. FFA has been synthesized by anchoring the recombinant bioluminescent firefly luciferase protein (Fluc) on the folate-conjugated AuNRs via the PEG linker. TEM images and UV-vis studies confirm the nanorod morphology and successful conjugation of the biomolecules to AuNRs. The nanoprobe FFA relies on the ability of the folate module to target the folate receptor-positive tumor cells actively, and simultaneously, the Fluc module facilitates excellent bioluminescent properties in physiological conditions. The success of chemical engineering in the present study enables stronger bioluminescent signals in the folate receptor-positive cells (Skov3, Hela, and MCF-7) than in folate receptor-negative cells (A549, 293T, MCF-10A, and HepG2). Additionally, the AuNRs induced strong photoacoustic conversion performance, enhancing the resolution of tumor imaging. No apparent toxicity was detected at the cellular and mouse tissue levels, manifesting the biocompatibility nature of the nanoprobe. Prompted by the positive merits of FFA, the in vivo animal studies were performed, and a notable enhancement was observed in the bioluminescent/photoacoustic intensity of the nanoprobe in the tumor region compared to that in the folate-blocking region. Therefore, this synergistic dual-modal bioluminescent and photoacoustic imaging platform holds great potential as a tumor-targeted contrast agent for early tumor diagnosis with high-performance imaging information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c00817 | DOI Listing |
Mikrochim Acta
September 2025
National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei Street, 060021, Bucharest, Romania.
Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).
View Article and Find Full Text PDFAdv Mater
September 2025
Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain.
Kelvin probe force microscopy (KPFM) is a highly advanced technique offering notable surface sensitivity and high lateral resolution, ranging from micrometres to the sub-nanometre scale. This scanning probe technique effectively detects local electrical surface potential (ESP), influenced charge distribution, and work function differences, making it essential for studying biological and biochemical processes, from single molecules to complex cellular structures. By enabling nanometre-resolution analysis under simulated conditions, KPFM provides crucial insights into the physicochemical evolution, functionality, and structural organization of biomolecular systems.
View Article and Find Full Text PDFAnal Chim Acta
October 2025
COFCO Lijin (Tianjin) Grain and Oil Co., Ltd., Tianjin, 300112, PR China.
Deoxynivalenol (DON), a prevalent trichothecene mycotoxin in cereals, poses severe threats to human health and agricultural sustainability. Conventional detection methods face limitations in sensitivity and operational complexity for on-site applications. Herein, we develop an electrochemical aptasensor integrating dual-signal amplification strategies: Nb.
View Article and Find Full Text PDFAdv Funct Mater
January 2025
Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
Cell reprogramming and manufacturing have broad applications in tissue regeneration and disease treatment. However, many derived cell types lack unique cell surface markers for protein-based cell sorting, making it difficult to isolate these cells from mixed populations. Additionally, there is a need to identify and isolate cells of interest at the early stages of cell expansion.
View Article and Find Full Text PDFMater Horiz
September 2025
Key Laboratory of Optoelectronics Technology Ministry of Education, School of Information Science and Technology, Beijing University of Technology, Beijing 100124, China.
Organic-inorganic perovskite materials have garnered widespread academic attention owing to their remarkable optical characteristics. Nonetheless, it is imperative to minimize the laser threshold and non-radiative recombination losses for developing perovskite lasers with superior performance. In this work, an innovative perovskite vertical-cavity surface-emitting laser (VCSEL) has been developed by integrating gold nanorods (Au NRs) into the resonant cavity to manipulate the light field energy distribution and optical confinement factor, significantly reducing the threshold of perovskite lasers through the localized surface plasmon resonance (LSPR) effect.
View Article and Find Full Text PDF