Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Across vertebrate species, the olfactory epithelium (OE) exhibits the uncommon feature of lifelong neuronal turnover. Epithelial stem cells give rise to new neurons that can adequately replace dying olfactory receptor neurons (ORNs) during developmental and adult phases and after lesions. To relay olfactory information from the environment to the brain, the axons of the renewed ORNs must reconnect with the olfactory bulb (OB). In Xenopus laevis larvae, we have previously shown that this process occurs between 3 and 7 weeks after olfactory nerve (ON) transection. In the present study, we show that after 7 weeks of recovery from ON transection, two functionally and spatially distinct glomerular clusters are reformed in the OB, akin to those found in non-transected larvae. We also show that the same odourant response tuning profiles observed in the OB of non-transected larvae are again present after 7 weeks of recovery. Next, we show that characteristic odour-guided behaviour disappears after ON transection but recovers after 7-9 weeks of recovery. Together, our findings demonstrate that the olfactory system of larval X. laevis regenerates with high accuracy after ON transection, leading to the recovery of odour-guided behaviour.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.16375DOI Listing

Publication Analysis

Top Keywords

olfactory
8
xenopus laevis
8
laevis regenerates
8
olfactory nerve
8
nerve transection
8
7 weeks recovery
8
non-transected larvae
8
odour-guided behaviour
8
transection
5
olfactory network
4

Similar Publications

The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.

View Article and Find Full Text PDF

Evaluating the olfactory preferences of emerging insect pests is critical to develop monitoring tools and improve early detection and management strategies. Here the chemical ecology and olfactory preferences of the allium leafminer Phytomyza gymnostoma Loew (Diptera: Agromyzidae), an invasive pest in North America affecting allium crops such as leeks and onions, were investigated. Three bioassay methods were assessed under laboratory conditions: wind tunnel, Y-tube olfactometer, and arena bioassay.

View Article and Find Full Text PDF

Sensory processing (SP) difficulties, such as heightened sensitivity to sensory input, have been linked to prolonged recovery and persistent post-concussive symptoms in adults following mild traumatic brain injury (mTBI). However, research on SP across different sensory inputs after pediatric mTBI is limited. This study examined SP patterns in children and adolescents aged 6-17 years with mTBI at 2 weeks and 6 months post-injury.

View Article and Find Full Text PDF

Multimode neural population coding of diverse innate fear response by mitral and tufted cells.

Cell Rep

September 2025

International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China. Electronic address:

Neurons that encode odor information are fundamental to innate fear processes, yet how mitral/tufted (M/T) cells encode innate fear remains unknown. Here, we identify three different response patterns of M/T cells in the dorsal olfactory bulb (dOB) during active avoidance elicited by non-dehydrogenated 2,4,5-trimethylthiazole (nTMT) through in vivo calcium imaging and multielectrode recordings in mice, including enhanced responses, suppressed responses, and no response. Remarkably, suppressed response M/T cells encode active avoidance, whereas suppressed and enhanced response M/T cells jointly encode passive freezing.

View Article and Find Full Text PDF

Cerrado ash reduces volatile emissions from faeces but does not influence the olfactory responses of the dung beetles.

Naturwissenschaften

September 2025

Laboratório de Ecologia E Conservação de Invertebrados, LECIN, Departamento de Ecologia E Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, PO Box 3037, CEP 37.203-202, Lavras, MG, Brasil.

Fire is a key natural disturbance influencing physical, chemical, and biological processes in the Cerrado. Ash, a fire byproduct, may significantly influence soil macrofauna through its chemical properties. Dung beetles (Scarabaeinae), critical components of Cerrado soil macrofauna, provide key ecological functions and services.

View Article and Find Full Text PDF