Article Synopsis

  • The cell wall of Cryptococcus neoformans and C. gattii is essential for their survival and ability to adapt, with chitin and chitosan as key components.
  • Both chitin and its derivative chitosan play critical roles in maintaining cell wall integrity and are linked to the pathogens' virulence.
  • Various techniques, including fluorescent probes and biochemical assays, have been developed to accurately measure and analyze levels of chitin and chitosan in these fungal pathogens.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The cell wall of the fungal pathogens Cryptococcus neoformans and C. gattii is critical for cell wall integrity and signaling external threats to the cell, allowing it to adapt and grow in a variety of changing environments. Chitin is a polysaccharide found in the cell walls of fungi that is considered to be essential for fungal survival. Chitosan is a polysaccharide derived from chitin via deacetylation that is also essential for cryptococcal cell wall integrity, fungal pathogenicity, and virulence. Cryptococcus has evolved mechanisms to regulate the amount of chitin and chitosan during growth under laboratory conditions or during mammalian infection. Therefore, levels of chitin and chitosan have been useful phenotypes to define mutant Cryptococcus strains. As a result, we have developed and/or refined various qualitative and quantitative methods for measuring chitin and chitosan. These techniques include those that use fluorescent probes that are known to bind to chitin (e.g., calcofluor white and wheat germ agglutinin), as well as those that preferentially bind to chitosan (e.g., eosin Y and cibacron brilliant red 3B-A). Techniques that enhance the localization and quantification of chitin and chitosan in the cell wall include (i) fluorescence microscopy, (ii) flow cytometry, (iii) and spectrofluorometry. We have also modified two highly selective biochemical methods to measure cellular chitin and chitosan content: the Morgan-Elson and the 3-methyl-2-benzothiazolone hydrazine hydrochloride (MBTH) assays, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487689PMC
http://dx.doi.org/10.1007/978-1-0716-3722-7_21DOI Listing

Publication Analysis

Top Keywords

chitin chitosan
24
cell wall
16
chitin
9
chitosan
8
chitosan content
8
wall integrity
8
cell
6
fluorescence biochemical
4
biochemical assessment
4
assessment chitin
4

Similar Publications

The development of functional materials for osteoporosis is essential for effective bone remodeling. In this context, the extraction of biocompatible implantable biomaterials from bio-waste emerges as a valuable strategy, addressing both environmental challenges and promoting human health. The objective of this work was to evaluate the physicochemical properties of the added-value by-product biomaterial (SS-90), extracted from sardine scales (Sardina Pilchardus) and combined with chitosan (SS-90-CH).

View Article and Find Full Text PDF

Domiati cheese, one of the most popular soft white cheeses, is particularly susceptible to microbial deterioration due to its high moisture content and low salt concentration. This study assesses the effectiveness of a new edible coating made from carboxymethyl chitosan nanoparticles loaded with pomegranate peel extract (CCS LP) in increasing the shelf life of Domiati cheese. The study compares CCS LP's performance to pomegranate peel extract (PPE) and carboxymethyl chitosan nanoparticles (CCS NPs) alone.

View Article and Find Full Text PDF

Disruption of egg and nymph development via RNAi-mediated Glutamine: fructose-6-phosphate aminotransferase knockdown in Locusta migratoria: A promising strategy for pest management.

Pestic Biochem Physiol

November 2025

Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Synthetic Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China.

Glutamine: fructose-6-phosphate aminotransferase (GFAT) is the first rate-limiting enzyme in the hexosamine biosynthetic pathway, which plays a crucial role in various biological processes, including chitin metabolism in insects. Locusta migratoria, a widespread and highly destructive agricultural pest, poses a significant threat due to its rapid reproduction and long-distance migration. In this study, we identified and characterized LmGFAT as a key regulator of locust development.

View Article and Find Full Text PDF

RNA interference (RNAi) is an endogenous eukaryote viral defence mechanism representing a unique form of post-transcriptional gene silencing that can be induced via the exongenous application of dsRNA. Due to its high specificity, dsRNA-based biopesticides are being developed to control pest insects. Whilst many lepidopteran species are recalcitrant to RNAi, Tuta absoluta, a polyphagous insect responsible for extensive crop damage, is sensitive.

View Article and Find Full Text PDF