Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To adapt to a terrestrial habitat, the ancestors of land plants must have made several morphological and physiological modifications, such as a meristem allowing for three-dimensional growth, rhizoids for water and nutrient uptake, air pore complexes or stomata that permit air exchange, and a defense system to cope with oxidative stress that occurs frequently in a terrestrial habitat. To understand how the meristem was determined during land plant evolution, we characterized the function of the closest PLETHORA homolog in the liverwort Marchantia polymorpha, which we named MpPLT. Through a transgenic approach, we showed that MpPLT is expressed not only in the stem cells at the apical notch but also in the proliferation zone of the meristem, as well as in cells that form the air-pore complex and rhizoids. Using the CRISPR method we then created mutants for MpPLT and found that the mutants are not only defective in meristem maintenance but also compromised in air-pore complex and rhizoid development. Strikingly, at later developmental stages, numerous gemma-like structures were formed in Mpplt mutants, suggesting developmental arrest. Further experiments indicated that MpPLT promotes plant growth by regulating MpWOX, which shared a similar expression pattern to MpPLT, and genes involved in auxin and cytokinin signaling pathways. Through transcriptome analyses, we found that MpPLT also has a role in redox homeostasis and that this role is essential for plant growth. Taken together, these results suggest that MpPLT has a crucial role in liverwort growth and development and hence may have played a crucial role in early land plant evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcae055DOI Listing

Publication Analysis

Top Keywords

plethora homolog
8
marchantia polymorpha
8
meristem maintenance
8
redox homeostasis
8
terrestrial habitat
8
land plant
8
plant evolution
8
mpplt
8
air-pore complex
8
mpplt mutants
8

Similar Publications

Eukaryotic diversity is largely microbial, with macroscopic lineages (plants, animals, and fungi) nesting among a plethora of diverse protists. Our understanding of the evolutionary relationships among eukaryotes is rapidly advancing through 'omics analyses, but phylogenomic analyses are challenging for microeukaryotes, particularly uncultivable lineages, as single-cell sequencing approaches generate a mixture of sequences from hosts, associated microbiomes, and contaminants. Moreover, many analyses of eukaryotic gene families and phylogenies rely on boutique data sets and methods that are challenging for other research groups to replicate.

View Article and Find Full Text PDF

In mammalian cells, DNA double strand breaks (DSBs) are primarily repaired via classical non-homologous end joining (c-NHEJ)-one of the most essential DNA repair pathways. As NHEJ does not utilize a template, this type of repair is the default mechanism for eliminating DSBs occurring in non-cycling cells. NHEJ is a crucial process in mammals, and defects of this repair pathway often result in immunological impairment owing to failure of somatic recombination in lymphocytes and improper neuronal biogenesis.

View Article and Find Full Text PDF

Members of the phylum Planctomycetota possess a plethora of intriguing and hitherto underexplored features including an enlarged periplasmic space, asymmetric cell division ("budding"), and a mostly undiscovered small molecule portfolio. Due to the large phylogenetic distance to frequently used and easily genetically accessible model bacteria, most of the established genetic tools are not readily applicable for the here-investigated bacterial phylum. However, techniques for targeted gene inactivation and the introduction of heterologous genes are crucial to investigate the cell biology in the phylum in greater detail.

View Article and Find Full Text PDF

22q11.2 deletion and duplication syndromes are complex genetic syndromes composed of a wide spectrum of clinical manifestations, mostly affecting cardiovascular, endocrine, neurodevelopmental, and immune functioning. 22q11.

View Article and Find Full Text PDF

Regulation of pathway choice in DNA repair after double-strand breaks.

Curr Opin Pharmacol

February 2025

Biotechnology Research and Innovation Council - National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi 110067, India; Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani 741251, India. Electronic address:

DNA damage signaling is a highly coordinated cellular process which is required for the removal of DNA lesions. Amongst the different types of DNA damage, double-strand breaks (DSBs) are the most harmful type of lesion that attenuates cellular proliferation. DSBs are repaired by two major pathways-homologous recombination (HR), and non-homologous end-joining (NHEJ) and in some cases by microhomology-mediated end-joining (MMEJ).

View Article and Find Full Text PDF