Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mesoporous silicon nitride (SiN) is a nontraditional support for the chemisorption of organometallic complexes with the potential for enhancing catalytic activity through features such as the increased Lewis basicity of nitrogen for heterolytic bond activation, increased ligand donor strength, and metal-ligand orbital overlap. Here, tetrabenzyl zirconium (ZrBn) was chemisorbed on SiN, and the resulting supported organometallic species was characterized by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Dynamic Nuclear Polarization-enhanced Solid State Nuclear Magnetic Resonance (DNP-SSNMR), and X-ray Absorption Spectroscopy (XAS). Based on the hypothesis that the nitride might enable facile heterolytic C-H bond activation along the Zr-N bond, this material was found to be a highly active (1.53 mol mol h at 450 °C) and selective (99% to propylene) catalyst for propane dehydrogenation. In contrast, the homologous silica supported complex exhibited negligible activity under these conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c02776DOI Listing

Publication Analysis

Top Keywords

silicon nitride
8
propane dehydrogenation
8
bond activation
8
nitride surface
4
surface enabled
4
enabled propane
4
dehydrogenation catalyzed
4
catalyzed supported
4
supported organozirconium
4
organozirconium mesoporous
4

Similar Publications

Antiviral efficacy of silicon nitride against SARS-CoV-2 and MERS-CoV: implications for PPE innovation.

Front Microbiol

August 2025

Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.

Medical interventions, such as masks, were a cornerstone in mitigating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since 2019, the scientific community has increasingly focused on exploring avenues for pandemic prevention and preparedness to enhance responses to future viral outbreaks. One such area of interest explores the use of additives, such as silicon nitride (Si₃N₄), in masks to enhance the antiviral properties of personal protective equipment.

View Article and Find Full Text PDF

Electrochemiluminescence (ECL) imaging through closed bipolar nanoelectrode arrays (BPnEAs) has emerged as a promising method for in situ label-free wide-field electrochemical imaging. In this study, a cathodic ECL system based on [Ru(bpz)]/SO is combined with the BPnEAs fabricated on silicon nitride membrane windows through focused ion beam nanofabrication, enabling effective bipolar imaging of heterogeneous anodic electrocatalytic reactions. The shape, distribution, size, and material composition of individual electrodes within the array can be precisely controlled.

View Article and Find Full Text PDF

Hard entropy limits of impurity doping prevent further miniaturization of low nanoscale silicon-based very large scale integration (VLSI) devices, thereby obstructing the path toward more energy-efficient VLSI designs with higher yield in compute power. As demonstrated here by synchrotron UV photoelectron spectroscopy (UPS) and X-ray absorption spectroscopy in total fluorescence yield mode (XAS-TFY), intrinsic Si at the bottom of the nanoscale (i-nano-Si) turns into strong p- or n-Si by embedding in silicon nitride (SiN) or silicon dioxide (SiO), respectively. The associated Nanoscale Electronic Structure Shift Induced by Anions at Surfaces (NESSIAS) creates a p/n junction in i-nano-Si by the quantum-chemical impact of SiN- vs SiO-coating, providing energy landscapes to accumulate electrons (holes) when SiO- (SiN-) coated, with free charge carriers provided by metallic interconnects.

View Article and Find Full Text PDF

The quest for high-capacity anode materials is vital in developing future lithium-ion battery technologies. While silicon-based anodes offer high theoretical capacity, their commercial realization is hindered by instability associated with large volume changes. Amorphous silicon nitride (a-SiN) has emerged as a promising alternative, acting as a conversion-type anode where lithium incorporation drives the formation of a structurally robust matrix and active phases.

View Article and Find Full Text PDF

Design and Static Analysis of MEMS-Actuated Silicon Nitride Waveguide Optical Switch.

Micromachines (Basel)

July 2025

College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

This article aims to utilize a microelectromechanical system (MEMS) to modulate coupling behavior of silicon nitride (SiN) waveguides to perform an optical switch based on a directional coupling (DC) mechanism. There are two states of the switch. First state, a SiN wire is initially positioned up suspended in the air.

View Article and Find Full Text PDF