Fibroblast alignment and matrix remodeling induced by a stiffness gradient in a skin-derived extracellular matrix hydrogel.

Acta Biomater

University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomaterials and Biomedical Tech

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Large skin injuries heal as scars. Stiffness gradually increases from normal skin to scar tissue (20x higher), due to excessive deposition and crosslinking of extracellular matrix (ECM) mostly produced by (myo)fibroblasts. Using a custom mold, skin-derived ECM hydrogels (dECM) were UV crosslinked after diffusion of ruthenium (Ru) to produce a Ru-dECM gradient hydrogel. The Ru diffusion gradient equates to a stiffness gradient and models physiology of the scarred skin. Crosslinking in Ru-dECM hydrogels results in a 23-fold increase in stiffness from a stiffness similar to that of normal skin. Collagen fiber density increases in a stiffness-dependent fashion while stress relaxation also alters, with one additional Maxwell element necessary for characterizing Ru-dECM. Alignment of fibroblasts encapsulated in hydrogels suggests that the stiffness gradient directs fibroblasts to orientate at ∼45 ° in regions below 120 kPa. In areas above 120 kPa, fibroblasts decrease the stiffness prior to adjusting their orientation. Furthermore, fibroblasts remodel their surrounding ECM in a gradient-dependent fashion, with rearrangement of cell-surrounding ECM in high-stiffness areas, and formation of interlaced collagen bundles in low-stiffness areas. Overall, this study shows that fibroblasts remodel their local environment to generate an optimal ECM mechanical and topographical environment. STATEMENT OF SIGNIFICANCE: This study developed a versatile in vitro model with a gradient stiffness using skin-derived ECM hydrogel with unchanged biochemical environment. Using Ruthenium crosslinking, a 20-fold stiffness increase was achieved as observed in fibrotic skin. The interaction between fibroblasts and matrix depends on changes in the matrix stiffness. The stiffness gradient directed the alignment of fibroblasts with ∼45° in regions with≤ 120 kPa. The cells in regions with the higher stiffness decreased stiffness first and then oriented themselves. Furthermore, fibroblasts remodeled surrounding ECM and regulated its mechanics in a gradient-dependent fashion to reach an optimal condition. Our study highlights the dynamic interplay between cells and surrounding matrix, shedding light on potential mechanisms and strategies to target scar formation and remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.05.018DOI Listing

Publication Analysis

Top Keywords

stiffness gradient
16
stiffness
13
120 kpa
12
extracellular matrix
8
normal skin
8
skin-derived ecm
8
stiffness stiffness
8
fibroblasts
8
alignment fibroblasts
8
fibroblasts remodel
8

Similar Publications

Traction-regulated persistence governs durotaxis across cell types.

Eur J Cell Biol

September 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China. Electronic address:

Cell migration toward stiffer or softer environments (durotaxis) underlies processes from development to cancer metastasis, yet the underlying mechanism and its universality remain unclear. To resolve this, we investigated how traction forces and directional persistence dictate cell migration along stiffness gradients. We utilized tunable PEG hydrogels with stiffness gradients of 1-16 kPa and perturbed contractility (blebbistatin, oligomycin), and adhesion (vinculin mutants), in cancer cells exhibiting opposing durotactic biases.

View Article and Find Full Text PDF

Mechanotransduction plays a pivotal role in shaping cellular behavior including migration, differentiation, and proliferation. To investigate this mechanism more accurately further, this study came up with a novel elastomeric substrate with a stiffness gradient using a sugar-based replica molding technique combined with a two-layer PDMS system. The efficient water solubility of candy allows easy release, creating a smooth substrate.

View Article and Find Full Text PDF

Human and mouse incisors are both primarily composed of dentin and enamel, which meet at an interface called the dentin-enamel junction (DEJ). However, incisors in the two species have very different growth patterns, structures, and loading requirements. Since the DEJ is responsible for minimizing cracking at this at-risk interface between mechanically dissimilar dentin and enamel, its structure is expected to be significantly different between humans and mice.

View Article and Find Full Text PDF

Portal hypertension (PH) is a major complication of chronic liver disease, often leading to serious clinical consequences such as variceal bleeding, ascites, and splenomegaly. The current gold standard for PH diagnosis, namely, hepatic venous pressure gradient measurement, is invasive and not widely available. Transient elastography has emerged as a non-invasive alternative for assessing liver stiffness (LS), and recent studies have highlighted the potential role of splenic stiffness (SS) in evaluating PH severity.

View Article and Find Full Text PDF

Surficial sediments are highly susceptible to physical, biological, and chemical processes, which can create significant heterogeneity, affecting the transmission and scattering of elastic waves. Non-invasive medical shear wave elastography (SWE) can potentially resolve shear speed heterogeneity in this delicate surficial layer. Samples were extracted from two mudflats in New Hampshire, USA, where sound speed and attenuation were measured 1 cm below the water-sediment interface using the core and resonance logger (200 kHz-1 MHz).

View Article and Find Full Text PDF