Single-cell transcriptome reveals highly complement activated microglia cells in association with pediatric tuberculous meningitis.

Front Immunol

Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Dev

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Tuberculous meningitis (TBM) is a devastating form of tuberculosis (TB) causing high mortality and disability. TBM arises due to immune dysregulation, but the underlying immune mechanisms are unclear.

Methods: We performed single-cell RNA sequencing on peripheral blood mononuclear cells (PBMCs) and cerebrospinal fluid (CSF) cells isolated from children (n=6) with TBM using 10 xGenomics platform. We used unsupervised clustering of cells and cluster visualization based on the gene expression profiles, and validated the protein and cytokines by ELISA analysis.

Results: We revealed for the first time 33 monocyte populations across the CSF cells and PBMCs of children with TBM. Within these populations, we saw that CD4_C04 cells with Th17 and Th1 phenotypes and Macro_C01 cells with a microglia phenotype, were enriched in the CSF. Lineage tracking analysis of monocyte populations revealed myeloid cell populations, as well as subsets of CD4 and CD8 T-cell populations with distinct effector functions. Importantly, we discovered that complement-activated microglial Macro_C01 cells are associated with a neuroinflammatory response that leads to persistent meningitis. Consistently, we saw an increase in complement protein (C1Q), inflammatory markers (CRP) and inflammatory factor (TNF-α and IL-6) in CSF cells but not blood. Finally, we inferred that Macro_C01 cells recruit CD4_C04 cells through CXCL16/CXCR6.

Discussion: We proposed that the microglial Macro_C01 subset activates complement and interacts with the CD4_C04 cell subset to amplify inflammatory signals, which could potentially contribute to augment inflammatory signals, resulting in hyperinflammation and an immune response elicited by -infected tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091396PMC
http://dx.doi.org/10.3389/fimmu.2024.1387808DOI Listing

Publication Analysis

Top Keywords

csf cells
12
macro_c01 cells
12
cells
11
tuberculous meningitis
8
cells pbmcs
8
monocyte populations
8
cd4_c04 cells
8
microglial macro_c01
8
inflammatory signals
8
populations
5

Similar Publications

Background: HIV-associated cryptococcal meningitis case fatality remains greater than 25%. Co-prevalent infections might contribute to poor outcomes. We aimed to ascertain the prevalence and the clinical significance of Epstein-Barr virus (EBV) and cytomegalovirus co-infections in patients with cryptococcal meningitis to guide potential therapeutic interventions.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy has changed how we treat blood cancers but hasn't worked as well for solid tumors like pancreatic ductal adenocarcinoma (PDAC), mainly because these tumors are very aggressive and resistant to regular treatments. This review critically examines peer-reviewed studies to chart the evolution of immunotherapy in PDAC, emphasizing the unique barriers to effective CAR T-cell treatment and emerging strategies to overcome them. CAR T-cells that focus on tumor-related markers like mesothelin, HER2, and MUC1 have shown promise in early research models.

View Article and Find Full Text PDF

Objective: Soluble interleukin-2 receptor (sIL-2R) is a biomarker for T cell activity. T cells are involved in neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) pathogenesis. However, sIL-2R has so far not been evaluated in these conditions.

View Article and Find Full Text PDF

: Sepsis (life-threatening organ dysfunction caused by a dysregulated host response to infection) causes millions of deaths worldwide annually. Sepsis-induced changes in brain regulatory functions remain understudied. Previous work demonstrated that cecal ligation and puncture (CLP, a murine model of sepsis) affected physiologic variables and serum cytokines and hormone levels.

View Article and Find Full Text PDF

Alveolar macrophages (AMs) are the first immune cells to encounter Mycobacterium tuberculosis (Mtb) in the lungs, but they frequently fail to eliminate this causative agent of tuberculosis (TB), allowing Mtb to persist or replicate. Interstitial macrophages (IMs) are recruited to restrict Mtb growth and limit immune evasion. While IMs have been implicated in the control of acute Mtb infection, their role during latent tuberculosis infection (LTBI) has not yet been explored.

View Article and Find Full Text PDF