Data-driven modelling makes quantitative predictions regarding bacteria surface motility.

PLoS Comput Biol

CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we quantitatively compare computer simulations and existing cell tracking data of P. aeruginosa surface motility in order to analyse the underlying motility mechanism. We present a three dimensional twitching motility model, that simulates the extension, retraction and surface association of individual Type IV Pili (TFP), and is informed by recent experimental observations of TFP. Sensitivity analysis is implemented to minimise the number of model parameters, and quantitative estimates for the remaining parameters are inferred from tracking data by approximate Bayesian computation. We argue that the motility mechanism is highly sensitive to experimental conditions. We predict a TFP retraction speed for the tracking data we study that is in a good agreement with experimental results obtained under very similar conditions. Furthermore, we examine whether estimates for biologically important parameters, whose direct experimental determination is challenging, can be inferred directly from tracking data. One example is the width of the distribution of TFP on the bacteria body. We predict that the TFP are broadly distributed over the bacteria pole in both walking and crawling motility types. Moreover, we identified specific configurations of TFP that lead to transitions between walking and crawling states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125545PMC
http://dx.doi.org/10.1371/journal.pcbi.1012063DOI Listing

Publication Analysis

Top Keywords

tracking data
16
surface motility
8
motility mechanism
8
experimental conditions
8
predict tfp
8
walking crawling
8
motility
6
tfp
6
data-driven modelling
4
modelling quantitative
4

Similar Publications

Importance: Cannabis is the most commonly used illicit drug, with 10% to 30% of regular users developing cannabis use disorder (CUD), a condition linked to altered hippocampal integrity. Evidence suggests high-intensity interval training (HIIT) enhances hippocampal structure and function, with this form of physical exercise potentially mitigating CUD-related cognitive and mental health impairments.

Objective: To determine the impact of a 12-week HIIT intervention on hippocampal integrity (ie, structure, connectivity, biochemistry) compared with 12 weeks of strength and resistance (SR) training in CUD.

View Article and Find Full Text PDF

This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.

View Article and Find Full Text PDF

Objective This research investigated the application of real-time, three-dimensional speckle tracking imaging (RT-3D-STI) to evaluate left atrial (LA) function in individuals suffering from hypertensive heart disease (HHD) and heart failure with preserved ejection fraction (HFpEF).Material and methods This retrospective study included 100 patients with HHD and HFpEF hospitalized from August 2023to June 2024 (HFpEF group). 100 healthy individuals undergoing physical examinations comprised the control group.

View Article and Find Full Text PDF

Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.

View Article and Find Full Text PDF

Introduction: Simple screening tools are critical for assessing Alzheimer's disease (AD)-related pre-dementia changes. This study investigated longitudinal scores from the Quick Dementia Rating System (QDRS), a brief study partner-reported measure, in relation to baseline levels of the AD biomarker plasma pTau217 in individuals unimpaired at baseline.

Methods: Data from the Wisconsin Registry for Alzheimer's Prevention (N = 639) were used to examine whether baseline plasma pTau217 (ALZpath assay on Quanterix platform) modified QDRS or Preclinical Alzheimer's Cognitive Composite (PACC3) trajectories (mixed-effects models; time = age).

View Article and Find Full Text PDF