Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the field of lithium-ion batteries, the challenges posed by the low melting point and inadequate wettability of conventional polyolefin separators have increased the focus on ceramic-coated separators. This study introduces a highly efficient and stable boehmite/polydopamine/polyethylene (AlOOH-PDA-PE) separator. It is crafted by covalently attaching functionalized nanosized boehmite (γ-AlOOH) whiskers onto polyethylene (PE) surfaces. The presence of a covalent bond increases the stability at the interface, while amino groups on the surface of the separator enhance the infiltration of the electrolyte and facilitate the diffusion of lithium ions. The PE-PDA-AlOOH separator, when used in lithium-ion batteries, achieves a discharge capacity of 126 mAh g at 5 C and retains 97.1% capacity after 400 cycles, indicating superior cycling stability due to its covalently bonded ceramic surface. Thus, covalent interface modification is a promising strategy to prevent delamination of ceramic coatings in separators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085248PMC
http://dx.doi.org/10.3390/ma17092162DOI Listing

Publication Analysis

Top Keywords

lithium-ion batteries
8
functionalized γ-boehmite
4
γ-boehmite covalent
4
covalent grafting
4
grafting modified
4
modified polyethylene
4
polyethylene lithium-ion
4
lithium-ion battery
4
separator
4
battery separator
4

Similar Publications

Chemically Lithiated Poly(vinylidene difluoride) with In Situ Generated LiF Nanofiller as Hybrid Artificial Layer for Stable Lithium Metal Anodes.

Small

September 2025

Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer  poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.

View Article and Find Full Text PDF

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.

View Article and Find Full Text PDF

Nanostructuring, which shortens lithium-ion diffusion lengths, can help facilitate pseudocapacitive behavior in some battery materials. Here, nanostructured LiNiCoAlO (NCA), with porosity and decreased crystallite size compared to commercial bulk NCA, was synthesized using a colloidal polymer template. Small particles (∼150 nm) were obtained using rapid thermal annealing (RTA), while medium particles (∼300 nm) were obtained with conventional heating.

View Article and Find Full Text PDF

Fluorinated Imidazolidinium Cations as a Fluorine-Lean Interface Repairing Agent for Li-Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.

Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.

View Article and Find Full Text PDF