98%
921
2 minutes
20
The widespread extensive use of synthetic polymers has led to a substantial environmental crisis caused by plastic pollution, with microplastics detected in various environments and posing risks to both human health and ecosystems. The possibility of plastic fragments to be dispersed in the air as particles and inhaled by humans may cause damage to the respiratory and other body systems. Therefore, there is a particular need to study microplastics as air pollutants. In this study, we tested a combination of analytical pyrolysis, gas chromatography-mass spectrometry, and gas and liquid chromatography-mass spectrometry to identify and quantify both microplastics and their additives in airborne particulate matter and settled dust within a workplace environment: a WEEE treatment plant. Using this combined approach, we were able to accurately quantify ten synthetic polymers and eight classes of polymer additives. The identified additives include phthalates, adipates, citrates, sebacates, trimellitates, benzoates, organophosphates, and newly developed brominated flame retardants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173031 | DOI Listing |
Anal Methods
September 2025
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
A novel magnetic nanostructured molecularly imprinted polymer probe (FeO@MIP) was developed for the continuous detection of Ti/Fe. The synthesis employed 50 nm FeO nanoparticles as the core matrix, with Ti and Fe serving as template molecules. Functional monomers α-methylacrylic acid (MAA) and acrylamide (AM) were used, along with ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent and 2,2'-azobisisobutyronitrile (AIBN) as the polymerization initiator, utilizing a microwave-assisted procedure.
View Article and Find Full Text PDFChemosphere
September 2025
Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland. Electronic address:
Perchlorate contamination is a recent and significant issue in the context of environmental pollution. Perchlorates are mainly used as ingredients in solid propellants and pyrotechnic compositions. Perchlorate contamination of drinking water and food has recently become a human health concern, as studies have shown that they can interfere with the normal uptake of iodine by the thyroid gland, leading to a reduction in its production of triiodothyronine (T3) and thyroxine (T4) in vertebrates.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. Electronic address:
Glycolipids are key structural and functional components of biological membranes, yet their interfacial hydration behavior remains poorly understood. Here, we use vibrational heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy to probe the molecular structure of the air-water interface formed by monolayers of ohmline, a glycolipid bearing a lactose headgroup and carrying no formal charge. Upon electrolyte addition, we observe a striking reorientation of interfacial water and a reversal of the HD-SFG signal, indicative of apparent surface charging by an otherwise neutral headgroup.
View Article and Find Full Text PDFBraz Oral Res
September 2025
Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru, SP, Brazil.
This in vitro study evaluated the effect of proanthocyanidin, palm oil, and vitamin E against initial erosion. Bovine enamel blocks (n = 140) were divided into 14 groups: C+_SnCl2/NaF/Am-F-containing solution (positive control); C-_deionized water (negative control); O_palm oil; P6.5_6.
View Article and Find Full Text PDFLasers Med Sci
September 2025
Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.
View Article and Find Full Text PDF