A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nondestructive testing of runny salted egg yolk based on improved ConvNeXt-T. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Salted egg yolks from salted duck eggs are widely utilized in the domestic and international food industry as both raw materials and ingredients. When salted egg yolks are not fully cured and matured, they exist in a fluid state, with a mixture of solid and liquid internally. Due to this composition, they are susceptible to deterioration during storage and usage, necessitating their detection and classification. In this study, a dataset specifically for salted egg yolks was established, and the ConvNeXt-T model, employed as the benchmark model, underwent two notable improvements. First, a lightweight location-aware circular convolution (ParC) was introduced, utilizing a ParC-block to replace a portion of the original ConvNeXt-T block. This enhancement aimed to overcome the limitations of convolution in extracting global feature information while integrating the global sensing capability of vision transformer and the localization capability of convolution. Additionally, the activation function was modified through substitution. These improvements resulted in the final model. Experimental results indicate that the enhanced model exhibits faster convergence on the custom salted egg yolk dataset compared to the baseline model. Furthermore, a significant reduction of model parameters by a factor of 4 led to a 2.167 percentage point improvement in the accuracy of the test set. The ParC-ConvNeXt-SMU-T model achieved an accuracy of 96.833% with 26.8 million parameters. Notably, the improved model demonstrates exceptional effectiveness in recognizing salted egg yolks. PRACTICAL APPLICATION: This study can be widely applied in the process of salted egg yolk production and quality inspection, which can improve the actual sorting efficiency of salted egg yolks and reduce the labor cost at the same time. It can also be used for nondestructive testing of salted egg yolks by governmental enterprises and other regulatory authorities.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.17010DOI Listing

Publication Analysis

Top Keywords

salted egg
36
egg yolks
24
egg yolk
12
salted
10
egg
9
nondestructive testing
8
model
8
yolks
6
testing runny
4
runny salted
4

Similar Publications